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Abstract

Inventory management is a critical aspect of supply chain operations, aiming to balance the
costs associated with holding inventory against the need to meet customer demand efficiently.
This overview explores various inventory management strategies and models, from traditional
economic order quantity (EOQ) and newsvendor models to advanced technological applications
like machine learning and IoT. Each approach provides unique insights into optimizing inventory
levels, minimizing costs, and improving overall supply chain performance.
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1 Theoretical Research

1.1 EOQ Model

The Economic Order Quantity (EOQ) model is a fundamental inventory management tool that deter-
mines the optimal order quantity minimizing total inventory costs, which include ordering and holding
costs. Developed by F.W. Harris in 1913 [1], this model provides a formula to calculate the most
cost-effective number of units to order, balancing the trade-off between inventory holding costs and
order setup costs. The EOQ model is widely used in manufacturing, retail, and various industries to
streamline inventory processes and enhance cost efficiency.

Formula of EOQ:

Q =

√
2DS

H
,

where:

• Q = EOQ units

• D = Demand in units (typically on an annual basis)

• S = Order cost (per purchase order)

• H = Holding cost (per unit, per year)

Total cost (excluding the purchase cost):

TC =
DS

Q
+

QH

2
,

where Q is the order quantity, and EOQ is the value of Q that minimizes the total cost, which can be
derived from the AM-GM Inequality.

EOQ with quantity discounts: EOQ for each price level:

EOQi =

√
2DS

Hi
,

where Hi = Ci ∗ h, and h is the holding cost rate (typically a percentage of unit purchase cost).
Total cost for each price level:

TCi = D ∗ Ci +
DS

Qi
+

DiHi

2
,

where Qi is the order quantity for each price level.

EOQ with stochastic demand: In this case with stochastic demand, the EOQ formula is as
same as the original case to determine the optimal order quantity, but safety stock must be added into
account for the variability of demand:

SS = Z ∗ σL,

where

• Z is the Z-score corresponding to the desired service level (e.g. for 95% service level, Z is
approximately 1.65).

• σL is the standard deviation of demand during lead time, calculated as σL = σD

√
L, where σD

is the standard deviation of demand per period, and L is the lead time.

Total Inventory Cost:

TC = D ∗ C +
DS

Q
+

QH

2
+

H ∗ SS
2

,

where Q is the order quantity, SS is the safety stock.
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1.2 Newsvendor Problem

The Newsvendor model addresses single-period inventory problems by balancing the costs of stockouts
and excess inventory.

Key concepts:

• Q: Order quantity

• D: Demand (r.v.)

• Overage Cost (Co): (inventory exceeds demand) including holding costs or disposal costs;

• Underage Cost (Cu): (demand exceeds inventory) including lost sales and potential loss of cus-
tomer goodwill

Problem Formulation:
Critical Ratio (CR):

CR =
Cu

Cu+ Co
,

which represents the balance point between the cost of understocking and overstocking. Optimal Order
Quantity (Q∗):
The optimal order quantity Q∗ is the quantity that satisfies the critical ratio:

F (Q∗) = CR,

where F (Q) is the cumulative distributive function of demand D.

Multi-Product Newsvendor Problem
Critical Ratio for Each Product:

CRi =
Cui

Cui + Coi

Optimal Order Quantity for Each Product:

Fi(Q
∗
i ) = CRi

Incorporating Resource Constraints:

i∑
n=1

CiQi ≤ B,

where B is the resource constraint (i.e. budget) and Ci is the cost per unit for product i.
To solve such problem, we may employ advanced optimization techniques including linear program-
ming, nonlinear programming, or heuristic methods.

Newsvendor Problem with Demand Distribution Uncertainty
Optimization objective: minimize the worst-case expected cost across all distributions in the uncertain
set P:

min
Q

sup
P∈P

EP[Cu(D −Q)+ + Co(Q−D)+]

We may use duality approach to solve this robust optimization problem and find the optimal Q.

1.3 Multi-Echelon Inventory Management

This approach focuses on coordinating inventory across different supply chain levels (e.g., factories,
warehouses, and retail stores) to optimize overall inventory levels.

Types of multi-echelon inventory systems include serial systems, distribution systems, and assembly
systems. And the objectives are: (1) minimize total cost; (2) minimize stockouts; (3) balance between
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minimizing holding costs and minimizing stockouts.

We consider a serial multi-echelon system consisting of a central warehouse (Echelon 1) and a retail
store (Echelon 2).
Objective function:

Total Cost = Ordering Cost + Holding Cost;

For central warehouse (Echelon 1):

Ordering Cost at Echelon 1 =
D

Q1
S1;

Holding Cost at Echelon 1 = h1(
Q1

2
+ Safety Stock at Echelon 1);

For the retail store (Echelon 2):

Ordering Cost at Echelon 2 =
D

Q2
S2;

Holding Cost at Echelon 2 = h2(
Q2

2
+ Safety Stock at Echelon 2).

Optimization objective is to minimize total cost, where

Safety Stock at Echelon 1 = ZσD

√
L2,

Safety Stock at Echelon 2 = ZσD

√
L1,

and L1 means the lead time from the central warehouse to the retail store, L2 means the lead time
from the supplier to the central warehouse, Z is the Z-score corresponding to the desired service level,
σD is the standard deviation of demand.

To solve the multi-echelon inventory management problem, we may employ advanced techniques
including dynamic programming, stochastic models, and simulation.

1.4 Dynamic Inventory Management

Dynamic inventory management adapts to changes in demand and supply by continuously adjusting
inventory strategies.

Optimization objective: minimize the total expected cost over a planning horizon T , which includes
ordering, holding, and shortage costs.

min
Qt

E

[
T∑

t=1

(CoQt + ChIt + CsSt)

]
,

where:

• t: time period

• Dt, Qt: demand/order quantity in period t

• It: inventory level at the beginning of t

• St: state of period t (e.g. inventory level, outstanding orders)

• Co, Ch, Cs: ordering/holding/shortage cost per unit

State Transition:
It+1 = Tt +Qt −Dt
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Bellman Equation: Dynamic programming uses the Bellman equation to solve the problem recur-
sively. The value function Vt(St) represents the minimum cost from period t to the end of the planning
horizon given the state St:

Vt(St) = min
Qt

[CoQt + ChIt + CsSt + E[Vt+1(St+1)|St, Qt]]

The Bellman Equation can be solved by numerical methods or dynamic programming algorithms, to
get the optimal Q∗ that minimizes the expected cost.

Dynamic Inventory Management with Reward Function
Reward function (depends on the order quantity, inventory level, and realized demand): Rt(Qt, Dt, It).

Optimization objective:

max
Qt

E

[
T∑

t=1

Rt(Qt, It, Dt)− (CoQt + ChIt + CsSt)

]

Bellman Equation:

Vt(St) = max
Qt

[E[Rt(Qt, It, Dt)− (CoQt + ChIt + CsSt) + Vt+1(St+1)|St, Qt]]

1.5 Stochastic Inventory Models

Stochastic models account for randomness in demand and replenishment times, using probabilistic
methods to optimize decisions.

Types of stochastic inventory models: (1) single-period models (newsvendor); (2) multi-period
models; (3) continuous review models (Q, r Models); (4) periodic review models (R, S Models).

Continuous Review Models (Q,r Models)
Key components:

• Order Quantity (Q): Fixed order quantity placed each time an order is triggered.

• Reorder Point (r): The inventory level at which a new order is placed.

• Lead Time (L): The time between placing an order and receiving it.

Reorder point:
r = µL + ZσL,

where µL is the mean demand during lead time, σL is the standard deviation of demand during lead
time, and Z is the Z-score corresponding to the desired service level.

Periodic Review Models (R,S Models)
Key components:

• Review Period (R): The fixed interval at which inventory levels are reviewed.

• Target Inventory Level (S): The desired inventory level after replenishment.

• Order Quantity (Q): The quantity ordered to reach the target level S.

Order quantity: Q = S − I, where I is the inventory level at the review time.
Target Inventory Level:

S = µR + ZσR,

where µR is the mean demand during the review period, σR is the standard deviation of demand
during the review period, and Z is the Z-score corresponding the the desired service level.
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1.6 Robust Inventory Management

Robust inventory management aims to maintain the stability and efficiency of inventory systems un-
der conditions of uncertainty and risk. It involves using robust optimization techniques to ensure that
inventory decisions are resilient to variations in demand, supply, and other factors. Robust inventory
management is particularly important in dynamic and unpredictable environments.

Robust Optimization Approach
Uncertainty set:

Dt ∈ [µ−∆, µ+∆],

where ∆ is the deviation from the mean demand µ.
Robust Newsvendor Model:
Total Cost:

TC(Q) = CoQ+ E[Ch max(0, Q−D) + Cs max(0, D −Q)]

Optimization objective:

min
Q

max
D∈[µ−∆,µ+∆]

(CoQ+ Ch max(0, Q−D) + Cs max(0, D −Q))

Solving such optimal Q may rely on optimization or numerical methods.
Multi-Period Robust Inventory Model
Optimization objective:

min
Qt

max
Dt∈[µ−∆,µ+∆]

E

[
T∑

t=1

(CoQt + ChIt + CsSt)

]

2 Technological Applications

2.1 Data-Driven Inventory Management

Data-driven inventory management leverages advanced data analytics, machine learning, and real-
time data to optimize inventory levels, improve forecasting accuracy, and enhance decision-making
processes. This approach focuses on utilizing vast amounts of data from various sources to create more
responsive and efficient inventory systems.

Recent developments in data-driven models include the following techniques:
Time Series Analysis: Use past sales data to determine future demand, common methods include

Moving Averages, Exponential Smoothing, ARIMA (AutoRegressive Integrated Moving Average), and
Seasonal Decomposition.

Yt = µ+ ϕtYt−1 + θtϵt−1 + ϵt, (ARIMA model)

Regression Analysis: Establish relationships between demand and other variables (e.g., price,
promotions, economic indicators).

Y = β0 + β1X1 + β2X2 + · · ·+ βnXn + ϵ, (Multiple Linear Regression)

Safety Stock Calculation: Account for demand variability and lead time variability to prevent
stockouts.

SS = Z ∗
√
(LT ∗ σ2

d) + (D2 ∗ σ2
LT ),

where Z is the Z-score for the desired service level, LT is the lead time, σD is the standard deviation
of demand, and σLT is the standard deviation of lead time.
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Figure 1: Recurrent Neural Network for Demand Forecasting

2.2 Machine Learning in Inventory Management

Machine learning (ML) technologies play a crucial role in automating and optimizing inventory manage-
ment processes by learning patterns from data. These technologies enable precise demand forecasting,
dynamic inventory optimization, and more efficient decision-making.

Carbonneau et al. (2008) [2] propose some forecasting techniques to predict the supply chain
demands, which include Recurrent Neural Networks (RNN) and Support Vector Machine.

Recurrent Neural Network is a special type of neural network which allows output signals of
some of their neurons to flow back and serve as inputs for the neurons of the same layer or those of
the previous layers. Therefore, RNNs can serve as a powerful tool for complex problems, especially
when time series data is included (as shown in Figure 1).

Support Vector Machine is a function approximator employing ”soft” margins, which produces
more insightful results compared to traditional neural networks and multiple linear regressions if there
are contradicting examples in the training set. As this demand forecasting problem is formulated as
a convex optimization model with no local minima, Support Vector Machines can provide a unique
solution, as opposed to back-propagation neural networks, which may have multiple local minima and
thus cannot guarantee to achieve the global minimum error.

Besides, in the field of inventory optimization, we may employ Reinforcement Learning to learn
optimal inventory policies by interacting with the environment and receiving feedback (rewards or
penalties), thus optimizing warehouse stock levels by minimizing holding costs and avoiding stock-
outs. Clustering algorithms can group similar items together based on demand patterns and other
attributes to manage inventory more effectively. And classification models predict the likelihood of
stockouts or excess inventory, allowing proactive adjustments.

2.3 Information Sharing in Inventory Management

Information sharing in inventory management is a powerful strategy that enhances the efficiency and
performance of the entire supply chain. By enabling the exchange of critical data between various
nodes of the supply chain, businesses can significantly reduce inefficiencies such as the bullwhip effect
and improve overall inventory management. In this section, we are mainly discussing the research by
Lee et al. (1997) [3] and Cachon and Fisher (2000) [4].
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Lee et al. (1997) [3] introduce the term ”bullwhip effect”, referring to the phenomenon where orders
to the supplier tend to have larger variance than sales to the buyer, and this distortion amplifies in
variability when moving up from retailers to manufacturers. The causes of bullwhip effect are demand
signal processing, the rationing game, order batching, and price variations.

Demand Signal Processing happens when demand is non-stationary and one uses past demand
information to update forecasts. The Rationing Game refers to the strategic ordering behavior of
buyers when supply shortage is anticipated, to try to secure more units, each retailer will issue an
order which exceeds in quantity what the retailer would order if the supply of the product is unlim-
ited. Order Batching is interrelated with Demand Signal Processing, influencing the whole supply
chain in periodic review systems. Price Variation happens when retailers proposed certain policy
to change the sales price for the sake of promoting sales, and customers may buy in larger quantities
than needed, leading to demand spikes.

While bullwhip effect has a detrimental impact on the overall performance of supply chain, Ca-
chon and Fisher (2000) [4] explore the impact of information sharing on supply chain performance.
Specifically, it examines how sharing demand and inventory data between supply chain partners can
reduce overall supply chain costs. The results suggest that while information sharing is beneficial,
improvements in the physical flow of goods through reduced lead times and batch sizes have a
more significant impact on supply chain efficiency. The study emphasizes that the real-time sharing of
inventory and demand data mitigates the bullwhip effect, leading to more synchronized and efficient
supply chain operations.

2.4 IoT in Inventory Management

The Internet of Things (IoT) revolutionizes inventory management by using interconnected sensors and
devices to monitor inventory status in real-time, significantly enhancing transparency and efficiency.

Gubbi et al. (2013) [5] describe the architecture of Internet of Things (IoT), which optimizes the
supply chain by providing real-time inventory monitoring and automated replenishment.

Real-Time Inventory Monitoring is enabled by RFID (Radio-Frequency Identification) tags
attached to inventory items, which emit signals to be captured by RFID readers, through which can
data be transmitted to a centralized system, and thus data can be processed and analyzed to produce
real-time visibility into the inventory levels.

Automated Replenishment is implemented by sensors embedded in storage bins or shelves,
which continuously measure inventory levels. When the quantity of an item reaches a reorder point,
the system automatically generates a purchase order and sends it to the supplier.

2.5 Blockchain in Inventory Management

Blockchain technology, by utilizing a distributed ledger, enhances the transparency and trustworthi-
ness of inventory information, thereby improving collaboration and efficiency within the supply chain.

Tian (2016) [6] proposes a model using RFID (Radio-Frequency ID) and blockchain technology in
building the agri-food supply chain traceability system in China (Figure 2). Covering not only industry
sectors but also regulatory system, this proposed tracibility system mainly relies on RFTD technol-
ogy to implement data acquisition, circulation and sharing in production, processing, warehousing,
distribution and sales links of agri-food supply chain. Besides, it also uses blockchain technology for
guaranteeing the information which shared and published in this traceability system is reliable and
authentic.

Kshetri (2018) [7] mentions that smart contracts operating on the blockchain can execute predefined
conditions without the need for intermediaries. This automation reduces the potential for human
error and ensures timely and accurate execution of inventory-related transactions. Hence, the smart
contracts implemented by blockchain technologies are efficient in optimizing inventory management.
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Figure 2: [Tian, 2016] [6] Conceptual framework of an agri-food supply chain traceability system based
on RFID & blockchain technology

2.6 Predictive Analytics in Inventory Management

Predictive analytics in inventory management leverages statistical models and machine learning algo-
rithms to forecast future demand and optimize inventory levels. This approach aims to minimize costs
associated with overstocking and understocking while ensuring product availability to meet customer
demand.

Hyndman and Athanasopoulos (2018) [8] introduce analysis techniques for predictive analysis of
time series data. Except for ARIMA (Autoregressive Integrated Moving Average) model that is covered
in Section 2.1, Exponential Smoothing (ETS) Model is also introduced.

ETS Model, including Holt-Winters methods, are effective for capturing seasonality and trends
in time series data. They rely on weighted averages of past observations to make forecasts.

St = αYt + (1− α)St−1,

where St is the smoothed value at time t, Yt is the observed value at time t, and α is the smoothing
parameter.

The objective of optimization in times series analysis is minimizing the sum of squared forecast
errors to fit the model to historical data:

Minimize

T∑
t=1

(Yt − Ŷt)
2

Trend Analysis: Identifying trends involves decomposing time series data into trend, seasonal,
and residual components. This can be done using techniques like seasonal decomposition of time series
(STL).

Yt = Tt + St +Rt,

where Tt is the trend component, St is the seasonal component, and Rt is the residual component.

Besides traditional statistical methods, deep learning models including Long Short-Term Memory
(LSTM), are suitable for sequence prediction tasks and can capture complex patterns in time series
data. Siami-Namini et al. (2018) [9] use ARIMA and LSTM models to conduct financial data predic-
tion, finding a 80% reduction in error rates of LSTM compared to traditional ARIMA model, which
showcases the effectiveness of LSTM model.

2.7 Optimization Algorithms in Inventory Management

Optimization algorithms play a crucial role in inventory management by utilizing mathematical models
and computational methods to determine optimal decision-making strategies. The primary applica-
tions include inventory optimization and inventory routing optimization.
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Linear Programming:

Maximize or Minimize Z =

n∑
i=1

cixi or Z = cTx,

subject to:
Ax ≤ b, xi ≥ 0 for all i.

Integer Programming:

Maximize or Minimize Z =

n∑
i=1

cixi or Z = cTx,

subject to:
Ax ≤ b, xi ∈ Z for all i.

Mixed-Integer Linear Programming:

Maximize or Minimize Z =

n∑
i=1

cixi or Z = cTx,

subject to:
Ax ≤ b, xi ≥ 0 for all i, xj ∈ Z for some specified j.

Dynamic Programming: DP is used for solving problems with a time component, breaking them
down into simpler subproblems. It is particularly useful in multi-period inventory management.

Vt(s) = max
a

{Rt(s, a) + βVt+1(f(s, a))},

where Vt(s) is the value function, Rt(s, a) is the immediate reward, and f(s, a) is the state transition
function.

3 Empirical Research

3.1 Industry-Specific Inventory Management Case Studies

Industry-specific inventory management focuses on the unique practices, challenges, and solutions
pertinent to different sectors. By examining manufacturing, retail, and pharmaceutical industries, we
can understand the distinct inventory management strategies and their effectiveness.

Cachon and Terwiesch (2006) [10] highlight the importance of matching supply with demand and
introduce various inventory management principles applicable across industries. They emphasize the
need for tailored solutions to address industry-specific challenges.

Fisher (1997) [11] discusses the necessity of selecting the right supply chain strategy for different
products. This involves understanding product demand characteristics and choosing appropriate in-
ventory management practices to enhance efficiency and responsiveness.

Case Studies:
Manufacturing Industry: A car manufacturer implements JIT (Just-In-Time Inventory, reduc-

ing holding costs) and lean manufacturing principles to optimize inventory. By aligning production
schedules closely with supplier deliveries and utilizing kanban systems, the manufacturer significantly
reduces inventory holding costs and improves production efficiency.

Retailing Industry: A major retail chain employs automated replenishment systems and VMI
(Vendor-Managed Inventory, Suppliers manage inventory levels based on retailer’s consumption data)
to streamline inventory management. By integrating real-time sales data with supplier systems, the re-
tailer achieves higher inventory turnover and reduces stockout incidents, leading to increased customer
satisfaction.

Pharmaceutical Industry: A pharmaceutical company implements FIFO (First-In-First-Out
Inventory Management, prioritizes the use of older stock to minimize expiry-related losses) and cold
chain management to handle sensitive products. By using sophisticated inventory tracking systems,
the company ensures regulatory compliance and reduces the risk of product expiry. This leads to
improved safety and availability of medications for patients.
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3.2 Supply Chain Collaboration in Inventory Management

Supply chain collaboration in inventory management involves coordination and information sharing
among upstream and downstream partners to optimize inventory levels across the entire supply chain.
This approach seeks to enhance efficiency, reduce costs, and improve service levels.

Lee and Whang (2000) [12] emphasize the importance of information sharing in supply chains,
showing how it can significantly reduce the bullwhip effect and lead to more efficient inventory man-
agement. They argue that greater transparency and timely information flow among partners enhance
overall supply chain performance.

Simchi-Levi et al. (2003) [13] provide comprehensive strategies for designing and managing supply
chains. They highlight the critical role of collaborative strategies, such as VMI and CPFR, in achieving
effective inventory control and improving supply chain resilience.

Information Sharing (as covered in Section 2.3)
Bullwhip Effect is a phenomenon where small fluctuations in demand at the retail level cause

progressively larger fluctuations upstream in the supply chain. Information sharing helps mitigate this
effect. Bullwhip effect can be characterized by:

PVariance amplification =
σ2
order

σ2
demand

.

Vendor-Managed Inventory (VMI): Suppliers manage inventory levels based on the data
shared by retailers:

Reorder Point = Daily UsageLead Time + Safety Stock.

Collaborative Planning, Forecasting, and Replenishment (CPFR) involves joint efforts
between supply chain partners to plan, forecast, and replenish inventory. This method relies on
synchronized planning and shared data:

Collaborative Forecast =

∑
Partner Forecast

Number of Partners
.

3.3 Technology-Driven Inventory Management

Technology-driven inventory management leverages cutting-edge technologies like the Internet of Things
(IoT), machine learning, and big data analytics to enhance inventory monitoring, demand forecasting,
and inventory optimization. The content of this section is mostly covered in Section 2.

Choi, Wallace, and Wang (2016) [14] discuss the transformative impacts of big data analytics
in operations management. They highlight how large datasets and advanced analytics can improve
decision-making processes in inventory management, leading to more accurate demand forecasts and
optimized inventory levels.

IoT technology helps to monitor the up-to-date information on inventory level:

Inventory Level(t) =

T∑
t=1

Sensor Datai(t).

Machine Learning aims to find the optimal prediction function f from historical data and trends
to predict future demands:

D̂t = f(Xt, θ) + ϵt,

where D̂t is the predicted demand, Xt represents the input features, θ denotes the model parameters,
and ϵt is the error term.
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4 Conclusion

In conclusion, effective inventory management requires a combination of classical models and mod-
ern technological advancements to address the complexities of today’s supply chains. By leveraging
data-driven insights and collaborative strategies, businesses can achieve significant improvements in
efficiency and cost-effectiveness. As supply chains continue to evolve, the integration of innovative
technologies will play a pivotal role in shaping the future of inventory management, ensuring that
companies remain competitive and responsive to market demands.
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