
Information-theoretic analysis of multivariate Markov chains:

subset selection and minimax factorization

Zheyuan Lai∗1

1Department of Statistics and Data Science, National University of Singapore, Singapore

Supervisor: Professor Michael Choi†

Abstract

We study multivariate Markov chains on product state spaces through an information-theoretic
lens. On the one hand, we study the problem of optimally projecting the transition matrix of a
finite ergodic multivariate Markov chain onto a lower-dimensional state space. Specifically, we seek
to construct a projected Markov chain that optimizes various information-theoretic criteria under
cardinality constraints. We formulate these tasks as best subset selection problems over multivariate
Markov chains and leverage the (k-)submodular (or (k-)supermodular) structure of the objective
functions to develop efficient greedy-based algorithms with theoretical guarantees. On the other
hand, we study the minimax factorization problem of multivariate Markov chains, where we seek to
find the optimal factorizable transition matrix that minimizes the maximum information-theoretic
distance to the transition matrices of the original family of Markov chains. We show that this
problem can be formulated as a convex optimization problem through strong duality and provide
provable algorithms. Finally, we present numerical experiments associated with Curie-Weiss and
Bernoulli-Laplace models to demonstrate the effectiveness of our proposed methods.

Contents

1 Introduction 3

2 Preliminaries 3
2.1 Some information-theoretic properties of multivariate Markov chains 3
2.2 Background and examples of submodular functions . 6
2.3 Some submodular optimization algorithms . 9
2.4 Examples of multivariate Markov chains . 13

2.4.1 Curie-Weiss model . 13
2.4.2 Bernoulli-Laplace level model . 14

I Subset selection for a single multivariate Markov chain 15

3 Submodular maximization of the entropy rate H(P (S)) 15
3.1 k-submodular maximization of the entropy rate of the tensorized keep-Si-in matrices

H(⊗k
i=1P

(Si)) . 16

4 Submodular optimization of distance to factorizability D(P∥P (S) ⊗ P (−S)) 17
4.1 Submodular minimization of the distance to factorizability 17
4.2 Submodular maximization of the distance to factorizability 18
4.3 k-submodular maximization of distance to factorizability of the tensorized keep-Si-in ma-

trices D(P∥P (S1) ⊗ . . .⊗ P (Sk) ⊗ P (−∪k
i=1Si)) . 18

∗Email: zheyuan lai@u.nus.edu
†Email: mchchoi@nus.edu.sg

1

mailto:zheyuan_lai@u.nus.edu
mailto:mchchoi@nus.edu.sg

5 Supermodular minimization of distance to independence I(P (S)) 19
5.1 Supermodular minimization of distance to independence of the complement set I(P (−S)) . 20
5.2 k-supermodular minimization of distance to independence of the tensorized keep-Si-in

matrices I(⊗k
i=1P

(Si)) . 20
5.3 k-supermodular minimization of distance to independence of the tensorized keep-Vi\Si-in

matrices I(⊗k
i=1P

(Vi\Si)) . 22

6 Supermodular minimization of distance to stationarity D(P (S)∥Π(S)) 23
6.1 Supermodular minimization of distance to stationarity of the complement setD(P (−S)∥Π(−S)) 25
6.2 k-supermodular minimization of distance to stationarity of tensorized keep-Si-in matrices

D(⊗k
i=1P

(Si)∥ ⊗k
i=1 Π

(Si)) . 25
6.3 k-supermodular minimization of distance to stationarity of tensorized keep-Vi\Si-in ma-

trices D(⊗k
i=1P

(Vi\Si)∥ ⊗k
i=1 Π

(Vi\Si)) . 26

7 Distance to factorizability over a fixed set D(P (W∪S)∥P (W) ⊗ P (S)) 26

8 Numerical Experiments 27
8.1 Experiment results of Section 3 . 27
8.2 Experiment results of Section 4 . 29
8.3 Experiment results of Section 5 . 31
8.4 Experiment results of Section 6 . 33
8.5 Experiment results of Section 7 . 36

II Minimax factorization for a family of multivariate Markov chains 38

9 The minimax optimization problem 38

10 An information-theoretic game 41

11 A projected subgradient algorithm 43

12 A max-min-max submodular optimization problem and a two-layer subgradient-
greedy algorithm 45

13 Numerical Experiments 49
13.1 Numerical experiments of Algorithm 5 . 49
13.2 Numerical experiments of Algorithm 6 . 53

2

1 Introduction

Motivation. Multivariate Markov chains on product spaces X = X (1) × . . . × X (d) with d ∈ N arise
naturally throughout stochastic modeling, Markov chain Monte Carlo (MCMC), and interacting particle
systems. In high dimensions when d is large, it is natural—both for analysis and for algorithm design—to
(i) propose a subset Markov chain which preserves the most information or is closest to equilibrium, and
(ii) approximate a complex transition matrix P by a simpler model that factorizes across groups of
coordinates. This paper develops an information-theoretic framework, associated structure theorems,
and algorithms for subset selection of a single Markov chain and minimax factorization of a family of
Markov chains.

Related works. We build on three lines of work: information projection for Markov chains, mini-
max information aggregation, and (robust) submodular optimization over partitions. Choi et al. (2024)
view factorization as minimizing the KL divergence between an original chain and the set of factor-
izable chains; Lacker (2025) introduces an independent projection for diffusion processes via relative
entropy minimization over product measures; and Geiger and Temmel (2014) study lumping of Markov
chains from combinatorial and information-theoretic perspectives. For minimax information aggregation,
Haussler (1997); Gushchin and Zhdanov (2006) analyze minimax optimization under KL and general f -
divergences for probability measures, while Hafez-Kolahi et al. (2022) cast minimax excess risk as a
zero-sum game between a learner and Nature. For submodular optimization over partitions, Nemhauser
et al. (1978) and Ward and Živnỳ (2016) give greedy algorithms with guarantees for submodular and
k-submodular partition functions; Orlin et al. (2018) address robust submodular optimization via bilevel
formulations; Bogunovic et al. (2017) propose algorithms for non-uniform partitions; and Staib and
Jegelka (2019) leverage continuous submodularity for robust budget allocation.

Structure. The remainder of the paper is organized as follows. Section 2 fixes notation and introduces
background knowledge: Section 2.1 summarizes key information-theoretic results in Markov chain the-
ory; Section 2.2 reviews submodularity and k-submodularity and discusses submodular functions arising
in the information-theoretic study of multivariate Markov chains; Section 2.3 covers submodular op-
timization algorithms with guarantees; and Section 2.4 gives examples of multivariate Markov chains
on product state spaces. We then divide the discussion into two parts. Part I studies optimization
problems concerning entropy rate (Section 3), distance to factorizability (Section 4), distance to inde-
pendence (Section 5), distance to stationarity (Section 6), and distance to factorizability over a fixed set
(Section 7), with numerical illustrations in Section 8. Part II reformulates minimax factorization as a
concave maximization problem via strong duality (Section 9) and interprets it as a two-player zero-sum
game (Section 10); we then present a projected subgradient method (Section 11) and a subgradient–
greedy algorithm (Section 12) to solve the minimax and max–min–max problems, followed by numerical
experiments in Section 13.

2 Preliminaries

2.1 Some information-theoretic properties of multivariate Markov chains

Throughout this paper, we consider a finite d-dimensional state space described by X = X (1)× . . .×X (d).
We write JdK = {1, 2, . . . , d}. For S ⊆ JdK, we write X (S) = ×i∈SX (i). We denote by L(X) to be the set
of transition matrices on X , and P(X) = {π | minx∈X π(x) > 0} to be the set of probability masses with
support on X . Let π ∈ P(X) be any given probability distribution, and denote L(π) ⊆ L(X) as the set
of π-reversible transition matrices on X , where a transition matrix P ∈ L(X) is said to be π-reversible if
the detailed balance condition holds such that π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ X . Additionally,
we say that P ∈ L(X) is π-stationary if it satisfies π = πP .

We now recall the definition of the tensor product of transition matrices and probability masses, see
e.g. Exercise 12.6 of (Levin and Peres, 2017). Define, for Ml ∈ L(X (l)), πl ∈ P(X (l)), xl, yl ∈ X (l) for
l ∈ {i, j}, i ̸= j ∈ JdK,

(Mi ⊗Mj)((x
i, xj), (yi, yj)) := Mi(x

i, yi)Mj(x
j , yj),

(πi ⊗ πj)(x
i, xj) := πi(x

i)πj(x
j).

3

A transition matrix P ∈ L(X) is said to be in a product form if there exists Mi ∈ L(X (i)) for i ∈ JdK
such that P = ⊗d

i=1Mi can be expressed as a d-fold tensor product. A probability mass π is said to be
in a product form if there exists πi ∈ P(X (i)) such that π = ⊗d

i=1πi.
We then recall the definition of leave-S-out and keep-S-in transition matrices of a given transition

matrix P , see Section 2.2 of (Choi et al., 2024). Let π ∈ P (X), P ∈ L(X), and S ⊆ JdK. For any

(x(−S), y(−S)) ∈ X (−S) × X (−S), we define the leave-S-out transition matrix to be P
(−S)
π with entries

given by

P (−S)
π (x(−S), y(−S)) :=

∑
(x(S),y(S))∈X (S)×X (S) π(x1, . . . , xd)P ((x1, . . . , xd), (y1, . . . , yd))∑

x(S)∈X (S) π(x1, . . . , xd)
.

The keep-S-in transition matrix of P with respect to π is

P (S)
π := P (−JdK\S)

π ∈ L(X (S)).

In the special case of S = {i} for i ∈ JdK, we write

P (−i)
π = P (−{i})

π , P (i)
π = P ({i})

π .

When P is π-stationary, we omit the subscript π and write directly P (−S), P (S). We also apply the
convention of P (∅) = P (−JdK) = 1.

We proceed to recall the Shannon entropy of a probability distribution and the entropy rate of the
transition matrix, see Section 1 of (Polyanskiy and Wu, 2025). For π ∈ P(X), its Shannon entropy is
defined as

H(π) := −
∑
x∈X

π(x) lnπ(x),

where the standard convention of 0 ln 0 := 0 applies. For π-stationary P ∈ L(X), the entropy rate of
P is defined as

H(P) := −
∑
x∈X

∑
y∈X

π(x)P (x, y) lnP (x, y),

where the standard convention of 0 ln 0 := 0 applies.
We shall also recall the definition of KL divergence between Markov chains (Definition 2.1 of (Choi

et al., 2024)) and the distance to independence (Definition 2.2 of (Choi et al., 2024)). For given π ∈ P(X)
and transition matrices M,L ∈ L(X), we define the KL divergence from L to M with respect to π as

Dπ
KL(M∥L) :=

∑
x∈X

π(x)
∑
y∈X

M(x, y) ln

(
M(x, y)

L(x, y)

)
,

where the convention of 0 ln 0
a := 0 applies for a ∈ [0, 1]. Note that π need not be the stationary

distribution of L or M . In particular, when M,L are assumed to be π-stationary, we write

D(M∥L) := Dπ
KL(M∥L),

which can be interpreted as the KL divergence rate from L to M . Given P ∈ L(X), we define the
distance to independence of P with respect to Dπ

KL to be

Iπ(P) := min
Li∈L(X (i)), ∀i∈JdK

Dπ
KL(P∥ ⊗d

i=1 Li) = Dπ
KL(P∥ ⊗d

i=1 P
(i)
π).

We write
I(P) = Iπ(P)

if P is π-stationary.
We recall the partition lemma for KL divergence of Markov chains (see Theorem 2.4 of (Choi et al.,

2024)).

Theorem 2.1 (Partition lemma). Let π ∈ P(X), P,L ∈ L(X) and suppose S ⊆ JdK, we have:

Dπ
KL(P∥L) ≥ Dπ(S)

KL (P (S)∥L(S)).

4

We then define the averaging operation P (w) of a transition probability matrix P . We define Sn
as the n-probability-simplex such that

Sn =

{
w = (w1, . . . , wn) ∈ Rn

+;

n∑
i=1

wi = 1

}
.

Given a set of π-stationary transition probability matrices B = {P1, . . . , Pn}, we define the transition
probability matrix weighted by w = (w1, . . . , wn) ∈ Sn as P (w) by

P = P (w) :=

n∑
i=1

wiPi.

We see that P is also π-stationary because

πP = π

(
n∑

i=1

wiPi

)
=

n∑
i=1

wi(πPi) =

n∑
i=1

wiπ = π.

We project each Pi onto S ∈ 2JdK and denote the weighted projection as

P (S,w) :=

n∑
i=1

wiP
(S)
i .

As a result, we have

P
(S)

=

(
n∑

i=1

wiPi

)(S)

=

n∑
i=1

wiP
(S)
i = P (S,w),

which means that the averaging operation commutes with the projection operation.
We then prove a Pythagorean identity related to the averaging operation and the KL divergence of

transition matrices.

Lemma 2.2. For given w ∈ Sn, π ∈ P(X), Pi, Q ∈ L(X) for i ∈ JnK where Pi are all π-stationary, we
choose mutually disjoint sets S1, . . . , Sm with ⊔mi=1Si = JdK, and the following identity holds:

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 Q
(Sj)) =

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P
(Sj)

) +

m∑
j=1

Dπ(Sj)

KL (P
(Sj)∥Q(Sj)). (1)

In particular, we have the following minimization result:

min
Q; Q=⊗m

j=1Q
(Sj)

n∑
i=1

wiD
π
KL(Pi∥Q) =

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P
(Sj)

).

Proof. Inspired by Theorem 2.22 of (Choi et al., 2024), we note that

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 Q
(Sj))

=

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P
(Sj)

) +

n∑
i=1

wi

∑
x,y

π(x)Pi(x, y) ln
⊗m

j=1P
(Sj)

(x, y)

⊗m
j=1Q

(Sj)(x, y)

=

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P
(Sj)

) +

m∑
j=1

n∑
i=1

wi

∑
x(Sj),y(Sj)

π(Sj)(x(Sj))P
(Sj)
i (x(Sj), y(Sj)) ln

P
(Sj)

(x(Sj), y(Sj))

Q(Sj)(x(Sj), y(Sj))

=

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P
(Sj)

) +

m∑
j=1

Dπ(Sj)

KL (P
(Sj)∥Q(Sj)),

where the last equality comes from the fact that the averaging and projection operation commutes.

5

As a corollary, in the special case of m = 2 with S1 = S, S2 = JdK\S, we see that

Corollary 2.3. For given w ∈ Sn, π ∈ P(X), Pi, Q ∈ L(X) for i ∈ JnK where Pi are all π-stationary,
S ∈ 2JdK, the following identity holds:

n∑
i=1

wiD
π
KL(Pi∥Q(S) ⊗Q(−S)) =

n∑
i=1

wiD
π
KL(Pi∥P

(S) ⊗ P
(−S)

) +Dπ(S)

KL (P
(S)∥Q(S)) +Dπ(−S)

KL (P
(−S)∥Q(−S)).

(2)

In particular, we have the following minimization result:

min
Q; Q=Q(S)⊗Q(−S)

n∑
i=1

wiD
π
KL(Pi∥Q) =

n∑
i=1

wiD
π
KL(Pi∥P

(S) ⊗ P
(−S)

).

2.2 Background and examples of submodular functions

We first recall the definition of a submodular function (Ward and Živnỳ, 2016). Given a finite nonempty
ground set U , a set function f : 2U → R defined on subsets of U is called submodular if for all S, T ⊆ U ,

f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T).

f is said to be supermodular if −f is submodular, and f is said to be modular if f is both submodular
and supermodular.

Next, we recall a result that states the complement of a submodular function is still submodular:

Lemma 2.4. If S 7→ f(S) is submodular, then S 7→ f(U\S) is submodular.

Proof. We choose S ⊆ T ⊆ U and e ∈ U\T , then(
f(U\(S ∪ {e}))− f(U\S)

)
−
(
f(U\(T ∪ {e}))− f(U\T)

)
=
(
f(U\T)− f(U\(T ∪ {e}))

)
−
(
f(U\S)− f(U\(S ∪ {e}))

)
≥ 0

since S 7→ f(S) is submodular and U\T ⊆ U\S, and hence S 7→ f(U\S) is submodular.

We call a submodular function f : 2U → R symmetric if f(A) = f(U\A) for all A ⊆ U .
A multivariate generalization of submodularity is known as k-submodularity (Ene and Nguyen, 2022)

where k ∈ N. In particular, 1-submodular function is equivalent to submodular function. Let f :
(k + 1)U → R be a set function. The function f is said to be k-submodular if

f(S) + f(T) ≥ f(S ⊓T) + f(S ⊔T) ∀S,T ∈ (k + 1)U ,

where S ⊓T is the k-tuple whose i-th set is Si ∩ Ti and S ⊔T is the k-tuple whose i-th set is (Si ∪ Ti) \(⋃
j ̸=i(Sj ∪ Tj)

)
. A function f is said to be k-supermodular if −f is k-submodular.

For S = (S1, . . . , Sk),T = (T1, . . . , Tk) ∈ (k + 1)U , we write S ⪯ T if and only if Si ⊆ Ti ∀i ∈ JkK. A
function f is said to be monotonically non-decreasing (resp. non-increasing) if

f(S) ≤ (resp. ≥) f(T) ∀S ⪯ T.

Let ∆e,if(S) be the marginal gain of adding e to the i-th set of S:

∆e,if(S) := f(S1, . . . , Si ∪ {e}, . . . , Sk)− f(S1, . . . , Si, . . . , Sk).

Note that f being monotonically non-decreasing is equivalent to ∆e,if(S) ≥ 0 for all S ∈ (k + 1)U ,
i ∈ JkK, and e /∈ supp(S), where we define supp(S) := ∪ki=1Si. A function f is said to be pairwise
monotonically non-decreasing (resp. non-increasing) if

∆e,if(S) + ∆e,jf(S) ≥ (resp. ≤) 0

for all S ∈ (k + 1)U , e /∈ supp(S), and i, j ∈ JkK such that i ̸= j. A function f is said to be orthant
submodular (resp. orthant supermodular) if

∆e,if(S) ≥ (resp. ≤)∆e,if(T) (3)

for all i ∈ JkK and S,T ∈ (k + 1)U such that S ⪯ T, e /∈ supp(T).
The following result that we recall characterizes k-submodularity (Theorem 7 of (Ward and Živnỳ,

2016)).

6

Theorem 2.5 (Characterization of k-submodularity). A function f is k-submodular (resp. k-supermodular)
if and only if f is both orthant submodular (resp. supermodular) and pairwise monotonically non-
decreasing (resp. non-increasing).

The next two results relates the sum of individually supermodular or submodular functions to k-
supermodularity or k-submodularity respectively.

Lemma 2.6. Let F : (k + 1)U → R defined to be

F (S) = F (S1, . . . , Sk) :=

k∑
i=1

Fi(Si)

be the sum of k monotonically non-increasing and supermodular functions (Fi)
k
i=1 with Fi : 2

U → R for
all i ∈ JkK. Then F is k-supermodular.

Proof. Throughout this proof, let i ̸= j ∈ JkK. First, we seek to prove that F is pairwise monotonically
non-increasing, in which case we aim to show ∆e,iF (S) + ∆e,jF (S) ≤ 0 for e /∈ supp(S):

∆e,iF (S) + ∆e,jF (S) = (Fi(Si ∪ {e})− Fi(Si)) + (Fj(Sj ∪ {e})− Fj(Si)) ≤ 0,

given that Fi, Fj are both monotonically non-increasing. Next, we seek to show that F is orthant
supermodular, in which case we aim to show that ∆e,iF (S) ≤ ∆e,iF (T) for any S ⪯ T and e /∈ supp(T):

∆e,iF (S)−∆e,iF (T) = (Fi(Si ∪ {e})− Fi(Si))− (Fi(Ti ∪ {e})− Fi(Ti)) ≤ 0,

given that Fi is supermodular. Therefore, F is k-supermodular given that it is pairwise monotonically
non-increasing and orthant supermodular using Theorem 2.5.

Corollary 2.7. Let G : (k + 1)U → R defined to be

G(S) = G(S1, . . . , Sk) :=

k∑
i=1

Gi(Si)

be the sum of k monotonically non-decreasing and submodular functions (Gi)
k
i=1 with Gi : 2

U → R for
all i ∈ JkK. Then G is k-submodular.

Proof. By applying Lemma 2.6 to −G, we see that −G is k-supermodular, which is equivalent to G being
k-submodular.

The next result, that we shall apply in subsequent sections, transforms a non-monotone submodular
f to a monotonically non-decreasing submodular g (Proposition 14.18 of (Korte and Vygen, 2008)).

Theorem 2.8 (Transform a non-monotone submodular f to a monotone submodular g). Let f : 2U → R
be a submodular function and β ∈ R, then g : 2U → R defined by

g(S) := f(S)− β +
∑
e∈S

(f(U\{e})− f(U))

is submodular and monotonically non-decreasing.

We aim to prove a generalized version of Theorem 2.8, that transforms a given constrained orthant
submodular function into a k-submodular function. Suppose that we are given V ∈ (k + 1)U . Then,
constrained to V, we can transform an orthant submodular function into a k-submodular function.

Theorem 2.9. Let f : (k+1)U → R be an orthant submodular function, β ∈ R and V ∈ (k+1)U . then
g : (k + 1)U ⪯ V→ R with

g(S) := f(S)− β +

k∑
i=1

∑
e∈Si

(f(V1, . . . , Vi\{e}, . . . , Vk)− f(V1, . . . , Vi, . . . , Vk))

is k-submodular and monotonically non-decreasing.

7

Proof. Suppose that S ⪯ T, i ∈ JkK, and e ∈ Vi\Ti. Since f is orthant submodular, we have ∆e,if(S) ≥
∆e,if(T), and hence

∆e,ig(S) = ∆e,if(S) + f(V1, . . . , Vi\{e}, . . . , Vk)− f(V1, . . . , Vi, . . . , Vk)

≥ ∆e,if(T) + ∆e,i

k∑
j=1

∑
u∈Tj

(f(V1, . . . , Vj\{u}, . . . , Vk)− f(V1, . . . , Vj , . . . , Vk))

= ∆e,ig(T).

This gives g is orthant submodular.
To prove the orthant monotonicity, we choose S ∈ (k+1)U , i ∈ JkK, and e ∈ Vi\Si. From the orthant

submodularity of f , since Si ⊆ Vi\{e}, we have

∆e,ig(S) = ∆e,if(S)− (f(V1, . . . , Vi, . . . , Vk)− f(V1, . . . , Vi\{e}, . . . , Vk)) ≥ 0.

Therefore g is monotonically non-decreasing, which implies that g is pairwise monotonically non-decreasing,
and hence g is k-submodular.

We then show some examples of submodular structures that arise in the information theory of Markov
chains.

Theorem 2.10 (Submodularity of some information-theoretic functions in Markov chain theory). Let
w ∈ Sn, S ⊆ JdK, P, Pi ∈ L(X) be π-stationary transition matrices for i ∈ JnK. We have

1. (Submodularity of the entropy rate of P) The mapping S 7→ H(P (S)) is submodular.

2. (Submodularity of the distance to (S, JdK\S)-factorizability of P) The mapping S 7→ Dπ
KL(P∥P (S)⊗

P (−S)) is submodular.

3. (Supermodularity and monotonicity of the distance to independence) The mapping S 7→ I(P (S)) is
monotonically non-decreasing and supermodular.

4. (Submodularity of the entropy rate of P) The mapping S 7→ H(P
(S)

) is submodular.

5. (Submodularity of the weighted distance to (S, JdK\S)-factorizability of B) The mapping S 7→∑n
i=1 wiD

π
KL(Pi∥P

(S) ⊗ P
(−S)

) is submodular.

Proof. From Proposition 2.33 of (Choi et al., 2024), item (1), item (2), and item (3) hold. Since the

map S 7→ H(P (S)) is submodular, the map S 7→ H(P
(S)

) is submodular since P
(S)

is the projection of
P onto subset S, which proves item (4). Since

n∑
i=1

wiD
π
KL(Pi∥P

(S) ⊗ P
(−S)

) = H(P
(S)

) +H(P
(−S)

)−
n∑

i=1

wiH(Pi),

we can conclude that S 7→
∑n

i=1 wiD
π
KL(Pi∥P

(S) ⊗ P
(−S)

) is submodular because both the map S 7→
H(P

(S)
) and the map S 7→ H(P

(−S)
) are submodular (by Lemma 2.4).

Next, we investigate the map S 7→ I(P (−S)), and show that it is monotonically non-increasing and
supermodular.

Theorem 2.11 (Supermodularity and monotonicity of the distance to independence of P (−S)). The
mapping S 7→ I(P (−S)) is monotonically non-increasing and supermodular.

Proof. We first prove the monotonicity. Suppose S ⊆ T ⊆ JdK, then JdK\T ⊆ JdK\S, hence according to
the partition lemma (Theorem 2.1), we have:

I(P (−S)) = D(P (−S)∥ ⊗i∈JdK\S P (i)) ≥ D(P (−T)∥ ⊗i∈JdK\T P (i)) = I(P (−T)),

therefore, S 7→ I(P (−S)) is monotonically non-increasing.
We then look into the supermodularity of this map. Since

I(P (−S)) =
∑

i∈JdK\S

H(P (i))−H(P (−S)),

then I(P (−S)) is supermodular because H(P (−S)) is submodular in view of Lemma 2.4 and Lemma
2.6.

8

2.3 Some submodular optimization algorithms

To maximize a monotonically non-decreasing submodular function, one can apply a heuristic greedy
algorithm (see Section 4 of (Nemhauser et al., 1978)) with (1− e−1)-approximation guarantee. For non-
monotone submodular functions, we recall a local search algorithm (see Theorem 3.4 of (Feige et al.,
2011)) in Algorithm 1 that comes along with an approximation guarantee.

Algorithm 1 Local Search Algorithm (Feige et al., 2011)

Require: Ground set U with |U | = d, submodular function f , positive ϵ > 0
1: Initialize S ← {e}, where f({e}) is the maximum over all singletons e ∈ U
2: while ∃ a ∈ U\S such that f(S ∪ {a}) ≥ (1 + ϵ/d2)f(S) do
3: S ← S ∪ {a}
4: end while
5: if ∃ a ∈ S such that f(S\{a}) ≥ (1 + ϵ/d2)f(S) then
6: S ← S\{a}
7: Go back to line 2
8: end if
9: Output: f(S) and f(U\S)

Theorem 2.12 (Approximation guarantee of Algorithm 1). Algorithm 1 is a
(
1
3 −

ϵ
d

)
-approximation

algorithm for maximizing non-negative submodular functions, and
(
1
2 −

ϵ
d

)
-approximation algorithm for

maximizing non-negative symmetric submodular functions. The time complexity of Algorithm 1 is O
(
1
ϵd

3 log d
)
.

In this paper, it turns out that some functions we are interested in optimizing can be written as a
difference of a submodular function and a modular function. In this section, we shall consider maximizing
the difference of a monotonically non-decreasing submodular g and a modular c on the ground set U
with cardinality constraint being at most m ∈ N. Precisely, we consider the problem

max
S⊆U ; |S|≤m

g(S)− c(S),

and

OPT = OPT(g, c, U,m) := argmax
S⊆U ; |S|≤m

g(S)− c(S).

Under this setting, a distorted greedy algorithm (Algorithm 2) has been proposed along with a
theoretical lower bound (Harshaw et al., 2019).

Algorithm 2 Distorted greedy algorithm for maximizing the difference between a mono-
tonically non-decreasing submodular function and a modular function

Require: monotonically non-decreasing submodular g with g(∅) ≥ 0, non-negative modular c, cardinal-
ity m, ground set U

1: Initialize S0 ← ∅
2: for i = 0 to m− 1 do

3: ei ← argmax
e∈U

{(
1− 1

m

)m−(i+1)
(g(Si ∪ {e})− g(Si))− c({e})

}
4: if

(
1− 1

m

)m−(i+1)
(g(Si ∪ {ei})− g(Si))− c({ei}) > 0 then

5: Si+1 ← Si ∪ {ei}
6: else
7: Si+1 ← Si

8: end if
9: end for

10: Output: Sm.

Theorem 2.13 (Lower bound for distorted greedy algorithm). Algorithm 2 provides the following lower
bound:

g(Sm)− c(Sm) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm is the final output set.

9

Let V ∈ (k + 1)U , and consider maximizing the difference of a monotonically non-decreasing k-
submodular g and a modular c on the ground set U with cardinality constraint being at most m ∈ N.
Precisely, we consider the problem

max
S⪯V; |supp(S)|≤m

g(S)− c(S), (4)

and

OPT = OPT(g, c, U,V,m) := argmax
S⪯V; |supp(S)|≤m

g(S)− c(S).

We propose a generalized distorted greedy algorithm (Algorithm 3) for solving (4), which is of inde-
pendent interest.

Algorithm 3 Generalized distorted greedy algorithm for maximizing the difference of k-
submodular function and a modular function

Require: k-submodular monotonically non-decreasing g with g(∅) ≥ 0, non-negative modular c with
c(∅) = 0, cardinality m, ground set U , V = (V1, . . . , Vk) ∈ (k + 1)U .

1: Initialize S0 = (S0,1, . . . , S0,k)← ∅
2: for i = 0 to m− 1 do

3: (j∗, e∗)← argmax
j∈JkK,e∈Vj\Si,j

{(
1− 1

m

)m−(i+1)
∆e,jg(Si)− c({e})

}
4: if

(
1− 1

m

)m−(i+1)
∆e∗,j∗g(Si)− c({e∗}) > 0 then

5: Si+1,j∗ ← Si,j∗ ∪ {e∗}
6: else
7: Si+1,j∗ ← Si,j∗

8: end if
9: for l ̸= j∗ do

10: Si+1,l ← Si,l

11: end for
12: end for
13: Output: Sm = (Sm,1, . . . , Sm,k).

The rest of this section is devoted to giving a lower bound for the generalized distorted greedy
algorithm. We assume that g is monotonically non-decreasing, k-submodular, g(∅) ≥ 0, while c is
non-negative, modular and c(∅) = 0.

In order to prove the lower bound for the generalized distorted greedy algorithm, we first define the
distorted objective function Φi : (k + 1)U → R, for m ∈ N and 0 ≤ i ≤ m− 1, that

Φi(S) := (1−m−1)m−ig(S)− c(S).

We also denote Ψi : (k + 1)U × JkK× U → R that

Ψi(S, j, e) := max{0, (1−m−1)m−(i+1)∆e,jg(S)− c({e})}.

Lemma 2.14. The difference of the distorted objective function of two iterations can be written as

Φi+1(Si+1)− Φi(Si) = Ψi(Si, j
∗, e∗) +

1

m

(
1− 1

m

)m−(i+1)

g(Si).

Proof. Similar to Lemma 1 of (Harshaw et al., 2019), we can show

Φi+1(Si+1)− Φi(Si) =

(
1− 1

m

)m−(i+1)

g(Si+1)− c(Si+1)−
(
1− 1

m

)m−i

g(Si) + c(Si)

=

(
1− 1

m

)m−(i+1)

g(Si+1)− c(Si+1)−
(
1− 1

m

)m−(i+1)(
1− 1

m

)
g(Si) + c(Si)

=

(
1− 1

m

)m−(i+1)

(g(Si+1)− g(Si))− (c(Si+1)− c(Si))

+
1

m

(
1− 1

m

)m−(i+1)

g(Si).

10

If (1−m−1)m−(i+1)∆e∗,j∗g(S)− c({e∗}) > 0, then e∗ is added to the solution set. In the algorithm we
have e∗ ∈ Vj∗\Si,j∗ , g(Si+1)− g(Si) = ∆e∗,j∗g(Si), c(Si+1)− c(Si) = c({e∗}), hence

Φi+1(Si+1)− Φi(Si) = Ψi(Si, j
∗, e∗) +

1

m

(
1− 1

m

)m−(i+1)

g(Si).

If (1−m−1)m−(i+1)∆e∗,j∗g(S)− c({ei}) ≤ 0, the algorithm does not add e∗ into the solution set, hence
Si+1 = Si. In this case, we also have

Φi+1(Si+1)− Φi(Si) = 0 +
1

m

(
1− 1

m

)m−(i+1)

g(Si) = Ψi(Si, j
∗, e∗) +

1

m

(
1− 1

m

)m−(i+1)

g(Si).

Summarizing these two cases, we see that

Φi+1(Si+1)− Φi(Si) = Ψi(Si, j
∗, e∗) +

1

m

(
1− 1

m

)m−(i+1)

g(Si).

Lemma 2.15. A lower bound for Ψi is

Ψi(Si, j
∗, e∗) ≥ 1

m

((
1− 1

m

)m−(i+1) (
g(OPT)− g(Si)

)
− c(OPT)

)
.

Proof. For j ∈ JkK, let

Ui,j := (Vj\Si,j) ∩OPTj ,

Ui :=

k⋃
j=1

Ui,j ,

Ui := (Ui,1, Ui,2, . . . , Ui,k),

and hence

Si,j ∪ Ui,j = Si,j ∪OPTj . (5)

We then have

mΨi(Si, j
∗, e∗) = m max

j∈JkK,e∈Vj\Si,j

{
0,

(
1− 1

m

)m−(i+1)

∆e,jg(Si)− c({e})

}

≥ |supp(OPT)| max
j∈JkK,e∈Ui,j

{
0,

(
1− 1

m

)m−(i+1)

∆e,jg(Si)− c({e})

}

≥ |Ui| max
j∈JkK,e∈Ui,j

{(
1− 1

m

)m−(i+1)

∆e,jg(Si)− c({e})

}

≥
k∑

j=1

∑
e∈Ui,j

((
1− 1

m

)m−(i+1)

∆e,jg(Si)− c({e})

)

=

(
1− 1

m

)m−(i+1) k∑
j=1

∑
e∈Ui,j

∆e,jg(Si)− c(Ui)

≥
(
1− 1

m

)m−(i+1) k∑
j=1

∑
e∈Ui,j

∆e,jg(Si)− c(OPT),

where the last inequality follows from the fact that c is non-negative. Then, the desired result follows if
we show that

k∑
j=1

∑
e∈Ui,j

∆e,jg(Si) ≥ g(OPT)− g(Si).

11

Since g is orthant submodular, by Lemma 1.1 of (Lee et al., 2010), we have∑
e∈Ui,j

∆e,jg(Si) ≥ g(Si,1, . . . , Si,j−1, Si,j ∪ Ui,j , Si,j+1, . . . , Sk)− g(Si),

and hence it further suffices to prove

k∑
j=1

g(Si,1, . . . , Si,j−1, Si,j ∪ Ui,j , Si,j+1, . . . , Sk) ≥ g(OPT) + (k − 1)g(Si). (6)

Since g is k-submodular, then

g(X) + g(Y) ≥ g(X ⊔Y) + g(X ⊓Y),

for any X,Y ∈ (k+1)U . We seek to apply this definition to update each of the k coordinates by adding
(Ui,j)

k
j=1 sequentially. For the first step, we have

g(Si,1 ∪ Ui,1, Si,2, . . . , Si,k) + g(Si,1, Si,2 ∪ Ui,2, Si,3, . . . , Si,k)

≥ g((Si,1 ∪ Ui,1)\(∪kl ̸=1Si,l ∪ Ui,2), (Si,2 ∪ Ui,2)\(∪kl ̸=2Si,l ∪ Ui,1), Si,3, . . . , Si,k) + g(Si)

= g(Si,1 ∪ Ui,1, Si,2 ∪ Ui,2, Si,3, . . . , Si,k) + g(Si),

where the last equality uses the fact that with n ∈ JkK,

(Si,n ∪ Ui,n) = (Si,n ∪ Ui,n)\(∪kl ̸=n(Si,l ∪ Ui,l)).

In the n-th step with n ∈ JkK, we thus have

g(Si,1 ∪ Ui,1, . . . , Si,n ∪ Ui,n, . . . , Si,k) + g(Si,1, . . . , Si,n, Si,n+1 ∪ Ui,n+1, . . . , Si,k)

≥ g(Si,1 ∪ Ui,1, . . . , Si,n+1 ∪ Ui,n+1, . . . , Si,k) + g(Si).

Repeating the above analysis leads to

k∑
j=1

g(Si,1, . . . , Si,j−1, Si,j ∪ Ui,j , Si,j+1, . . . , Sk) ≥ g(Si ⊔Ui) + (k − 1)g(Si).

Finally, using the assumption that g is monotonically non-decreasing and OPT ⪯ Si ⊔Ui in view of
(5), we have

k∑
j=1

g(Si,1, . . . , Si,j−1, Si,j ∪ Ui,j , Si,j+1, . . . , Sk) ≥ g(OPT) + (k − 1)g(Si),

and hence (6) holds.

Finally, we prove a lower bound for the generalized distorted greedy algorithm:

Theorem 2.16 (Lower bound for generalized distorted greedy algorithm). Algorithm 3 provides the
following lower bound:

g(Sm)− c(Sm) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm = (Sm,1, . . . , Sm,k) is the final output set.

Proof. According to our assumptions, we have

Φ0(S0) =

(
1− 1

m

)m

g(∅)− c(∅) ≥ 0

and

Φm(Sm) =

(
1− 1

m

)0

g(Sm)− c(Sm) = g(Sm)− c(Sm).

12

Therefore, we have

g(Sm)− c(Sm) ≥ Φm(Sm)− Φ0(S0) =

m−1∑
i=0

Φi+1(Si+1)− Φi(Si). (7)

We apply Lemma 2.14 and 2.15 to yield

Φi+1(Si+1)− Φi(Si) = Ψi(Si, j
∗, e∗) +

1

m

(
1− 1

m

)m−(i+1)

g(Si)

≥ 1

m

(
1− 1

m

)m−(i+1)

g(OPT)− 1

m
c(OPT).

We plug the above bound into (7) to obtain

g(Sm)− c(supp(Sm)) ≥
m−1∑
i=0

[
1

m

(
1− 1

m

)m−(i+1)

g(OPT)− 1

m
c(OPT)

]

=

[
1

m

m−1∑
i=0

(
1− 1

m

)i
]
g(OPT)− c(OPT)

=

(
1−

(
1− 1

m

)m
)
g(OPT)− c(OPT)

≥ (1− e−1)g(OPT)− c(OPT).

2.4 Examples of multivariate Markov chains

2.4.1 Curie-Weiss model

We aim to generate a d-dimensional Markov chain from the Curie-Weiss model. We consider a discrete
d-dimensional hypercube state space given by

X = {−1,+1}d.

Let the Hamiltonian function be that of the Curie-Weiss model (see Chapter 13 of (Bovier and Den Hol-
lander, 2016)) on X with interaction coefficients 1

2|j−i| and external magnetic field h = 1, that is, for

x = (x1, . . . , xd) ∈ X ,

H(x) = −
d∑

i=1

d∑
j=1

1

2|j−i|x
ixj − h

d∑
i=1

xi.

We consider a Glauber dynamics with a simple random walk proposal targeting the Gibbs distribution
at temperature T = 10. At each step we pick uniformly at random one of the d coordinates and flip it
to the opposite sign, along with an acceptance-rejection filter, that is,

P (x, y) =


1

d
e−

1
T (H(y)−H(x))+ , if y = (x1, x2, . . . ,−xi, . . . , xd), i ∈ JdK,

1−
∑

y; y ̸=x P (x, y), if x = y,

0, otherwise,

where for m ∈ R we denote m+ := max{m, 0} as the non-negative part of m. The stationary distribution
of P is the Gibbs distribution at temperature T given by

π(x) =
e−

1
T H(x)∑

z∈X e−
1
T H(z)

.

13

2.4.2 Bernoulli-Laplace level model

We aim to generate a d-dimensional Markov chain from the Bernoulli-Laplace level model. We consider a
(d+1)-dimensional Bernoulli-Laplace level model as described in Section 4.2 of (Khare and Zhou, 2009).
Let

X = {x = (x1, . . . , xd+1) ∈ Nd+1
0 ; x1 + . . .+ xd+1 = N}

be the state space, where xi can be interpreted as the number of “particles” of type i out of the total
number N = d. The stationary distribution of such Markov chain, π, is given by the multivariate
hypergeometric distribution described in Lemma 4.18 of (Khare and Zhou, 2009). Concretely, we have

π(x) =

∏d+1
i=1

(
li
xi

)(
l1+...+ld+1

N

) , x ∈ X ,

for some fixed parameters l1 = . . . = ld = 1 and ld+1 = d, which represents the total number of “particles”

of type i. Under this setting, we let xd+1 = N −
∑d

i=1 x
i, and hence the state space is of product form

with X = {0, 1}d.
Following the spectral decomposition for reversible Markov chains (see Section 2.1 of (Khare and

Zhou, 2009) for background), the transition matrix P is written as:

P (x, y) =

N∑
n=0

βnϕn(x)ϕn(y)π(y),

where βn are the eigenvalues and ϕn(x) is the eigenfunction.
From Definition 4.15 of (Khare and Zhou, 2009), in the Bernoulli-Laplace level model, s is the swap

size parameter satisfying

0 ≤ s ≤ min

{
N,

d+1∑
i=1

li −N

}
,

where we consider
∑d+1

i=1 li > N . From Theorem 4.19 of (Khare and Zhou, 2009), the eigenvalues for the
Bernoulli-Laplace level model are given by

βn =

n∑
k=0

(
n

k

)
(N − s)[n−k]s[k]

N[n−k]

(∑d+1
i=1 li −N

)
[k]

, 0 ≤ n ≤ N,

where a[k] = a(a− 1) · · · (a− k + 1), and we apply the convention that a[0] = 1.
In this case, we choose the eigenfunction as

ϕn(x) =

{
Qn

(
x;N,−

d+1∑
i=1

li

)}
|n|=n

,

where Qn are the multivariate Hahn polynomials for the hypergeometric distribution as defined in
Proposition 2.3 of (Khare and Zhou, 2009).

14

Part I

Subset selection for a single multivariate
Markov chain

3 Submodular maximization of the entropy rate H(P (S))

Given P ∈ L(X) and m ∈ N, we aim to investigate the following submodular maximization problem
with cardinality constraint:

max
S⊆JdK; |S|≤m

H(P (S)). (8)

From Theorem 2.10, the map S 7→ H(P (S)) is submodular but generally not monotonically non-
decreasing. Since the widely-used heuristic greedy algorithm is near-optimal only when the objective
submodular function is monotonically non-decreasing (see Section 4 of (Nemhauser et al., 1978)), in this
regard our problem does not have a classical greedy-based approximation guarantee. On the other hand,
since H(P (S)) ≥ 0 and H(P (∅)) = 0, if we consider the unconstrained maximization problem of (8), we
can apply Algorithm 1 with

(
1
3 −

ϵ
d

)
-approximation guarantee (see Theorem 2.12).

Instead, we consider

H(P) = H(π ⊠ P)−H(π),

where we define the edge measure of P with respect to π as (π ⊠ P)(x, y) := π(x)P (x, y) and π ⊠ P ∈
P(X × X).

Then, the map

S 7→ H(P (S)) = H(π(S) ⊠ P (S))−H(π(S)) (9)

can be considered as a monotonically non-decreasing submodular function H(π(S) ⊠P (S)) minus a non-
negative modular function H(π(S)) if we assume π to be of product form. This fits into the setting of
the distorted greedy as in Algorithm 2, and leads us to Corollary 3.1.

Corollary 3.1. Let P ∈ L(X) be π-stationary where π is of product form. In Algorithm 2, we take
g(S) = H(π(S) ⊠ P (S)), c(S) = H(π(S)), and OPT = argmaxS⊆JdK; |S|≤m H(P (S)). Therefore, Theorem
2.13 gives

H(P (Sm)) ≥ (1− e−1)H(π(OPT) ⊠ P (OPT))−H(π(OPT)),

where Sm is the output of Algorithm 2.

More generally for P with non-product-form π as stationary distribution, in view of Theorem 2.8, for
any β ∈ R we have a monotonically non-decreasing submodular g given by

g(S) = H(P (S))− β +
∑
e∈S

(H(P (−e))−H(P)), (10)

and we also denote the following modular function

c(S) = −β +
∑
e∈S

(H(P (−e))−H(P))

= −β +
∑
e∈S

(D(P∥P (e) ⊗ P (−e))−H(P (e))). (11)

As H(P (e)) ≤ log |X (e)|, c is ensured to be non-negative if β ≤ −
∑d

i=1 log |X (i)|. Since

H(P (S)) = g(S)− c(S),

we can employ Algorithm 2 to perform distorted greedy maximization with a lower bound.

15

Corollary 3.2. Let P ∈ L(X) be π-stationary. In Algorithm 2, we take g as in (10), c as in (11),

β ≤ −
∑d

i=1 log |X (i)|, and OPT = argmaxS⊆JdK; |S|≤m H(P (S)). Therefore, Theorem 2.13 gives

H(P (Sm)) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm is the output of Algorithm 2.

Note that the lower bound of Corollary (3.2) depends on β through g and c. If β is chosen to be too
small, then the lower bound might be too loose as the right hand side might be negative.

3.1 k-submodular maximization of the entropy rate of the tensorized keep-
Si-in matrices H(⊗k

i=1P
(Si))

In this subsection, we investigate the the following map

(k + 1)JdK ∋ S = (S1, . . . , Sk) 7→ f(S) = H(⊗k
i=1P

(Si)) =

k∑
i=1

H(P (Si)), (12)

and consider maximization problems of the form, for given V ∈ (k + 1)JdK,

max
S⪯V; |supp(S)|≤m

H(⊗k
i=1P

(Si)). (13)

In the special case of k = 1 and V = JdK, we recover the problem (8).
First, we consider the special case where P is π-stationary with π taking on a product form. Similar

to the map (9), we re-write the map (12) as

S 7→ f(S) =

k∑
i=1

H(π(Si) ⊠ P (Si))−
k∑

i=1

H(π(Si)). (14)

Since H(π(Si) ⊠ P (Si)) is monotonically non-decreasing and submodular, then by Corollary 2.7, the
following function g is monotonically non-decreasing and k-submodular

g(S) =

k∑
i=1

H(π(Si) ⊠ P (Si)). (15)

Since π is of product form, we denote the non-negative modular function c as

c(S) =

k∑
i=1

H(π(Si)). (16)

Therefore, we have

f(S) = g(S)− c(S),

and the distorted greedy algorithm yields an approximate maximizer with a lower bound as in Theo-
rem 2.16.

Corollary 3.3. Let P ∈ L(X) be π-stationary where π is of product form. In Algorithm 3, we take g
as in (15) and c as in (16), and OPT = argmaxS⪯V; |supp(S)|≤m f(S). Then by Theorem 2.16, we have
the following lower bound

f(Sm) = H(⊗k
i=1P

(Sm,i)) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm = (Sm,1, . . . , Sm,k) is the output of Algorithm 3.

In the special case where k = 1 and V = JdK, we recover Corollary 3.1.
Next, we investigate the case where P is π-stationary for general π which may not be of product

form. We first prove an orthant submodularity result.

Lemma 3.4. The map (12) is orthant submodular.

16

Proof. We shall prove that ∆e,if(S) ≥ ∆e,if(T), where we choose S ⪯ T and e /∈ supp(T). Given the
submodularity of S 7→ H(P (S)), we have

H(P (Si∪{e}))−H(P (Si)) ≥ H(P (Ti∪{e}))−H(P (Ti)),

which is equivalent to ∆e,if(S) ≥ ∆e,if(T).

In view of Theorem 2.9, since the map (12) is orthant submodular, then for any β ∈ R, if S ⪯ V, we
have a monotonically non-decreasing k-submodular function g given by

g(S) =

k∑
i=1

H(P (Si))− β +

k∑
i=1

∑
e∈Si

(H(P (Vi\{e}))−H(P (Vi))), (17)

and we also denote the following modular function

c(S) = −β +

k∑
i=1

∑
e∈Si

(H(P (Vi\{e}))−H(P (Vi)))

= −β +

k∑
i=1

∑
e∈Si

(D(P (Vi)∥P (e) ⊗ P (Vi\{e}))−H(P (e))). (18)

As H(P (e)) ≤ log |X (e)|, c is ensured to be non-negative if β ≤ −
∑k

i=1

∑
e∈Vi

log |X (e)|. Since

f(S) =

k∑
i=1

H(P (Si)) = g(S)− c(S),

then we can apply Algorithm 3 to perform distorted greedy maximization with a guaranteed lower bound.

Corollary 3.5. Let P ∈ L(X) be π-stationary and V ∈ (k+1)JdK. In Algorithm 3, we take g as in (17)

and c as in (18), β ≤ −
∑k

i=1

∑
e∈Vi

log |X (e)|, and OPT = argmaxS⪯V; |supp(S)|≤m f(S). Therefore,
Theorem 2.16 gives

f(Sm) = H(⊗k
i=1P

(Sm,i)) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm = (Sm,1, Sm,2, . . . , Sm,k) is the output of Algorithm 3.

Note that the lower bound of Corollary 3.5 depends on β through g and c. If β is chosen to be too
small, then the lower bound might be too loose as the right hand side might be negative.

4 Submodular optimization of distance to factorizability D(P∥P (S)⊗
P (−S))

4.1 Submodular minimization of the distance to factorizability

For
2JdK ∋ S 7→ D(P∥P (S) ⊗ P (−S)),

we first recall that this map is submodular (see Lemma 2.10). Since D(P∥P (S)⊗P (−S)) = D(P∥P (−S)⊗
P (S)), then this map is also symmetric. In this case, there exists an algorithm for minimizing non-negative
symmetric submodular functions (see Theorem 14.25 of (Korte and Vygen, 2008)) that gives

S∗ ∈ argmin
∅̸=S⊂JdK; |S|≤m

D(P∥P (S) ⊗ P (−S))

with time complexity O(d3θ). Here, θ denotes the worst case time needed to evaluate D(P∥P (S)⊗P (−S))
for any given subset S.

17

4.2 Submodular maximization of the distance to factorizability

Given P ∈ L(X) and m ∈ N, we aim to investigate the following submodular maximization problem
subject to a cardinality constraint

max
S⊆JdK; |S|≤m

D(P∥P (S) ⊗ P (−S)). (19)

Since D(P∥P (S) ⊗ P (−S)) ≥ 0 and D(P∥P (∅) ⊗ P (JdK)) = 0, if we consider the unconstrained version
of (19), we can apply Algorithm 1 with

(
1
2 −

ϵ
d

)
-approximation guarantee (see Theorem 2.12) since

D(P∥P (S) ⊗ P (−S)) is symmetric.
In view of Theorem 2.8, we choose β = 0 and take

g(S) = D(P∥P (S) ⊗ P (−S)) +
∑
e∈S

D(P∥P (−e) ⊗ P (e)), (20)

which is submodular and monotonically non-decreasing. In this case, we also take the modular and
non-negative function c to be

c(S) =
∑
e∈S

D(P∥P (−e) ⊗ P (e)). (21)

Therefore,

D(P∥P (S) ⊗ P (−S)) = g(S)− c(S)

can be expressed as the difference of a non-negative, submodular, monotonically non-decreasing function
and a non-negative modular function, hence Algorithm 2 can be applied to approximately maximize
D(P∥P (S) ⊗ P (−S)).

Corollary 4.1. Let P ∈ L(X) be π-stationary. In Algorithm 2, we take g as in (20) and c as in (21),
and OPT = argmaxS⊆JdK; |S|≤m D(P∥P (S) ⊗ P (−S)). By Theorem 2.13, we have

D(P∥P (Sm) ⊗ P (−Sm)) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm is the final output set of Algorithm 2.

4.3 k-submodular maximization of distance to factorizability of the ten-
sorized keep-Si-in matrices D(P∥P (S1) ⊗ . . .⊗ P (Sk) ⊗ P (−∪k

i=1Si))

In this section, we investigate the following map

(k + 1)JdK ∋ S 7→ f(S) = D(P∥P (S1) ⊗ . . .⊗ P (Sk) ⊗ P (−∪k
i=1Si)), (22)

We consider the maximization problem of the form, for given V ∈ (k + 1)JdK,

max
S⪯V; |supp(S)|≤m

D(P∥P (S1) ⊗ . . .⊗ P (Sk) ⊗ P (−∪k
i=1Si)). (23)

In the special case of k = 1 and V = JdK, we recover problem (19).

Lemma 4.2. The map (22) is orthant submodular.

Proof. We shall prove that ∆e,if(S) ≥ ∆e,if(T), where we choose S ⪯ T and e /∈ supp(T). We compute
that

∆e,if(S)−∆e,if(T) = H(P (Si∪{e}))−H(P (Si)) +H(P (−supp(S)∪{e}))−H(P (−supp(S)))

−H(P (Ti∪{e})) +H(P (Ti))−H(P (−supp(T)∪{e})) +H(P (−supp(T)))

=
[(
H(P (Si∪{e}))−H(P (Si))

)
−
(
H(P (Ti∪{e}))−H(P (Ti))

)]
+
[(
H(P (−supp(T)))−H(P (−supp(T)∪{e}))

)
−
(
H(P (−supp(S)))−H(P (−supp(S)∪{e}))

)]
,

where each of the two terms above are non-negative given the submodularity of S 7→ H(P (S)) (recall
Theorem 2.10).

18

In view of Theorem 2.9, since the map (22) is orthant submodular, for any β ∈ R, if S ⪯ V, we have
a monotonically non-decreasing k-submodular function given by

g(S) = f(S)− β +

k∑
i=1

∑
e∈Si

[
D(P∥P (V1) ⊗ . . .⊗ P (Vi\{e}) ⊗ . . .⊗ P (Vk) ⊗ P (−supp(V)\{e}))

−D(P∥P (V1) ⊗ . . .⊗ P (Vi) ⊗ . . .⊗ P (Vk) ⊗ P (−supp(V)))
]

= f(S)− β +

k∑
i=1

∑
e∈Si

[
H(P (Vi\{e})) +H(P (−supp(V)\{e}))−H(P (Vi))−H(P (−supp(V)))

]

= f(S)− β +

k∑
i=1

∑
e∈Si

[
D(P (Vi)∥P (Vi\{e}) ⊗ P (e))−D(P (−supp(V)\{e})∥P (−supp(V)) ⊗ P (e))

]
, (24)

and we also obtain the following modular function

c(S) = −β +

k∑
i=1

∑
e∈Si

[
D(P (Vi)∥P (Vi\{e}) ⊗ P (e))−D(P (−supp(V)\{e})∥P (−supp(V)) ⊗ P (e))

]
. (25)

Thus, if we choose

β ≤ −
k∑

i=1

∑
e∈Vi

(
H(P (−supp(V)\{e})) +H(P (e))

)
,

then c is non-negative. With these choices, f can be written as

f(S) = D(P∥P (S1) ⊗ . . .⊗ P (Sk) ⊗ P (−∪k
i=1Si)) = g(S)− c(S).

We can then apply Algorithm 3 to perform distorted greedy maximization with a lower bound.

Corollary 4.3. Let P ∈ L(X) be π-stationary and V ∈ (k+1)JdK. In Algorithm 3, we take g as in (24)
and c as in (25). We choose

β ≤ −
k∑

i=1

∑
e∈Vi

(
H(P (−supp(V)\{e})) +H(P (e))

)
,

and let OPT = argmaxS⪯V; |supp(S)|≤m f(S). Therefore, Theorem 2.16 gives

f(Sm) = D(P∥P (Sm,1) ⊗ . . .⊗ P (Sm,k) ⊗ P (−∪k
i=1Sm,i)) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm = (Sm,1, . . . , Sm,k) is the output of Algorithm 3.

Note that the lower bound of Corollary 4.3 depends on β through g and c. If β is chosen to be too
small, then the lower bound might be too loose as the right hand side might be negative.

5 Supermodular minimization of distance to independence I(P (S))

Given P ∈ L(X) and d,m ≥ 2, we aim to investigate the following supermodular (recall Theorem 2.10)
minimization problem

min
S⊆JdK; |S|=m

I(P (S)). (26)

We shall be interested in the constraint |S| = m rather than |S| ≤ m as in Section 3 and Section 4
because S 7→ I(P (S)) is monotonically non-decreasing.

The supermodular minimization problem (26) is equivalent to the following submodular maximization
problem

max
S⊆JdK; |S|=m

f(S) = −I(P (S)) = H(P (S))−
∑
e∈S

H(P (e)). (27)

19

Note that we restrict m to be at least 2, since we have the trivial result that I(P (e)) = I(P (∅)) = 0 if the
constraint ism = 0 orm = 1. From Theorem 2.10, f(S) is monotonically non-increasing and submodular.
Therefore, the heuristic greedy algorithm (see Section 4 of (Nemhauser et al., 1978)) cannot provide a
theoretical guarantee.

In view of Theorem 2.8, for any β ∈ R, we have a monotonically non-decreasing submodular function
g given by

g(S) = f(S)− β +
∑
e∈S

(H(P (−e)) +H(P (e))−H(P))

= f(S)− β +
∑
e∈S

D(P∥P (e) ⊗ P (−e)). (28)

We choose β = 0 and let the following non-negative, modular function be

c(S) =
∑
e∈S

D(P∥P (e) ⊗ P (−e)) (29)

so that f(S) = g(S)− c(S). By Theorem 2.13, we can apply Algorithm 2 to obtain a lower bound.

Corollary 5.1. Let P ∈ L(X) be π-stationary along with d,m ≥ 2. In Algorithm 2, we take g as in (28),
c as in (29), and OPT = maxS⊆JdK; |S|=m f(S). By Theorem 2.13, we have the following lower bound

f(Sm) = −I(P (Sm)) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm is the output of Algorithm 2.

5.1 Supermodular minimization of distance to independence of the comple-
ment set I(P (−S))

From Theorem 2.11, I(P (−S)) is monotonically non-increasing and supermodular. Given P ∈ L(X),
d ≥ 2, and m ≤ d− 2, we shall investigate the following optimization problem

max
S⊆JdK; |S|≤m

f(S) = −I(P (−S)).

Note that we restrict m to be at most d− 2, since we have the trivial result that I(P (e)) = I(P (∅)) = 0
if the constraint is m = d or m = d− 1.

Since f(S) = −I(P (−S)) is monotonically non-decreasing and submodular, then we can apply the
heuristic greedy algorithm (see Section 4 of (Nemhauser et al., 1978)) that comes along with a (1− e−1)-
approximation guarantee.

5.2 k-supermodular minimization of distance to independence of the ten-
sorized keep-Si-in matrices I(⊗k

i=1P
(Si))

In this section, we investigate the following map

(k + 1)JdK ∋ S = (S1, . . . , Sk) 7→ I(⊗k
i=1P

(Si)). (30)

Lemma 5.2. For k ∈ N and S ∈ (k + 1)JdK, we have

I(⊗k
i=1P

(Si)) =

k∑
i=1

I(P (Si)).

Proof. We shall prove by induction on k. When k = 1, the equality trivially holds. When k = 2,
according to the chain rule of KL divergence (see Theorem 2.15 of (Polyanskiy and Wu, 2025)),

I(P (S1) ⊗ P (S2)) = D(P (S1) ⊗ P (S2)∥ ⊗i∈S1∪S2 P
(i))

= D(P (S1)∥ ⊗i∈S1
P (i)) +D(P (S2)∥ ⊗i∈S2

P (i))

= I(P (S1)) + I(P (S2)).

20

Suppose I(⊗m
i=1P

(Si)) =
∑m

i=1 I(P (Si)) holds (k = m), then using the chain rule of KL divergence again
(Theorem 2.15 of (Polyanskiy and Wu, 2025)), we have

I(⊗m+1
i=1 P (Si)) = D(⊗m

i=1P
(Si) ⊗ P (Sm+1)∥ ⊗i∈(∪m

i=1Si)∪Sm+1
P (i))

= D(⊗m
i=1P

(Si)∥ ⊗i∈∪m
i=1Si

P (i)) +D(P (Sm+1)∥ ⊗i∈Sm+1
P (i))

=

m+1∑
i=1

I(P (Si)).

Lemma 5.3. The map (30) is pairwise monotonically non-decreasing. In particular, when P is non-
factorizable and π-stationary, the map (30) is pairwise monotonically strictly increasing for all pairs.

Proof. Let f(S) = I(⊗k
i=1P

(Si)). We shall prove that ∆e,if(S) + ∆e,jf(S) ≥ 0, where i ̸= j ∈ JdK and
e /∈ supp(T). Since I(P (S)) =

∑
i∈S H(P (i))−H(P (S)), we note that

∆e,if(S) + ∆e,jf(S) = I(P (Si∪{e}))− I(P (Si)) + I(P (Sj∪{e}))− I(P (Si))

=
[
H(P (e)) +H(P (Si))−H(P (Si∪{e}))

]
+
[
H(P (e)) +H(P (Sj))−H(P (Sj∪{e}))

]
= D(P (Si∪{e})∥P (Si) ⊗ P (e)) +D(P (Sj∪{e})∥P (Sj) ⊗ P (e)),

which is non-negative. In particular, when P is non-factorizable, it is strictly positive.

Lemma 5.4. The map (30) is orthant supermodular.

Proof. Let f(S) = I(⊗k
i=1P

(Si)). For any S ⪯ T, we shall prove that ∆e,if(S) ≤ ∆e,if(T), where i ∈ JdK
and e ∈ JdK\supp(T).

∆e,if(S)−∆e,if(T) =
[
H(P (e)) +H(P (Si))−H(P (Si∪{e}))

]
−
[
H(P (e)) +H(P (Ti))−H(P (Ti∪{e}))

]
=
[
H(P (Ti∪{e}))−H(P (Ti))

]
−
[
H(P (Si∪{e}))−H(P (Si))

]
≤ 0,

where the inequality holds owing to the submodularity of S 7→ H(P (S)) in view of Theorem 2.10.

Collecting the previous two results, we see that, for non-factorizable P , the map (30) is not k-
supermodular as k-supermodularity requires both the pairwise monotonically non-increasing property
and orthant supermodularity (see Theorem 2.5).

Given P ∈ L(X), d,m ≥ k + 1 and V ∈ (k + 1)JdK, since the map (30) is orthant supermodular, we
are interested in the following orthant submodular maximization problem

max
S⪯V; |supp(S)|=m

f(S) = −I(⊗k
i=1P

(Si)) = −
k∑

i=1

I(P (Si)).

We are restricting m to be at least k + 1 following the pigeonhole principle, as we need at least one Si

with |Si| > 1. If m ≤ k, we can take either Si = {e} or Si = ∅ for all i ∈ JkK so that the optimization
problem becomes trivial.

In view of Theorem 2.9, we have a monotonically non-decreasing and k-submodular function g given
by

g(S) = f(S)− β +

k∑
i=1

∑
e∈Si

[H(P (Vi\{e})) +H(P (e))−H(P (Vi))]

= f(S)− β +

k∑
i=1

∑
e∈Si

D(P (Vi)∥P (Vi\{e}) ⊗ P (e)). (31)

We take β = 0, and denote the following non-negative modular function as

c(S) =

k∑
i=1

∑
e∈Si

D(P (Vi)∥P (Vi\{e}) ⊗ P (e)) (32)

21

so that f(S) = g(S) − c(S). By applying Algorithm 3, we can obtain a result with the following lower
bound by Theorem 2.16.

Corollary 5.5. Let P ∈ L(X) be π-stationary along with d,m ≥ k+1 and V ∈ (k+1)JdK. In Algorithm 3,
we take g as in (31), c as in (32), and OPT = argmaxS⪯V; |supp(S)|=m f(S), then by Theorem 2.16, we
have the following lower bound

f(Sm) = −I(⊗k
i=1P

(Sm,i)) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm = (Sm,1, . . . , Sm,k) is the output of Algorithm 3.

In the special case where k = 1 and V = JdK, we recover Corollary 5.1.

5.3 k-supermodular minimization of distance to independence of the ten-
sorized keep-Vi\Si-in matrices I(⊗k

i=1P
(Vi\Si))

For given V ∈ (k + 1)JdK, we consider the following map in view of Lemma 5.2,

{S ∈ (k + 1)JdK; S ⪯ V} ∋ S = (S1, . . . , Sk) 7→ I(⊗k
i=1P

(Vi\Si)) =

k∑
i=1

I(P (Vi\Si)). (33)

We first prove a result concerning monotonicity and k-supermodularity of the map above.

Theorem 5.6. The map (33) is monotonically non-increasing and k-supermodular.

Proof. In view of Theorem 2.11, for each component Si, we take Vi as the ground set, hence I(P (Vi\Si))
is monotonically non-increasing and supermodular. From Lemma 5.2, this function is the sum of k
monotonically non-increasing and supermodular functions. From Lemma 2.6, we conclude that this map
is k-supermodular and monotonically non-increasing.

Therefore, we denote the following monotonically non-decreasing, k-submodular function g as

g(S) = −I(⊗k
i=1P

(Vi\Si)) = −
k∑

i=1

I(P (Vi\Si)). (34)

Given d ≥ k + 1, m ≤ d− k − 1, we are interested in the following maximization problem given by

max
S⪯V; |supp(S)|≤m

g(S).

We are restricting m by m ≤ d− k− 1 following the pigeonhole principle, as we want |Vi\Si| ≥ 2 for
at least one i. If m ≥ d − k, we can choose either Vi\Si = {e} or Vi\Si = ∅ so that the optimization
problem is trivial.

By taking c = 0 as a non-negative modular function, we can apply Algorithm 3 to obtain an opti-
mization result with (1− e−1)-approximation guarantee.

Corollary 5.7. Let P ∈ L(X) be π-stationary along with d ≥ k + 1, m ≤ d− k − 1 and V ∈ (k + 1)JdK.
In Algorithm 3, we take g as in (34), c = 0 and denote

OPT = argmax
S⪯V; |supp(S)|≤m

g(S).

From Theorem 2.16, we can obtain the following lower bound

g(Sm) ≥ (1− e−1)g(OPT),

where Sm = (Sm,1, . . . , Sm,k) is the output of Algorithm 3.

22

6 Supermodular minimization of distance to stationarity D(P (S)∥Π(S))

In this section, we investigate the following map:

2JdK ∋ S 7→ D(P (S)∥Π(S)), (35)

where Π is the matrix of stationary distribution with each row of Π being π. We first show that this
map is monotonically non-decreasing.

Lemma 6.1. The map (35) is monotonically non-decreasing.

Proof. We choose S ⊆ T ⊆ JdK. By the partition lemma (Theorem 2.1), we have

D(P (S)∥Π(S)) ≤ D(P (T)∥Π(T)),

and hence this map is monotonically non-decreasing.

We are interested in the following optimization problem

max
S⊆JdK; |S|=m

D(P (S)∥Π(S)),

as solving the above can help to identify coordinates which are furthest away from the equilibrium in
one step.

To solve this optimization problem with a theoretical guarantee, we recall the batch greedy algorithm
(Algorithm 4, see Theorem 7 of (Jagalur-Mohan and Marzouk, 2021)).

Algorithm 4 Batch greedy algorithm

Require: monotonically non-decreasing set function f ; ground set U ; total cardinality constraint m;
number of steps l and cardinality constraints qi such that

∑l
i=1 qi = m

1: Initialize S0 = ∅
2: for i = 1 to l do
3: Determine incremental gains f(Si−1 ∪ {e})− f(Si−1), ∀e ∈ U\Si−1

4: Find Q, comprising the elements with top-qi incremental gains
5: Si ← Si−1 ∪Q
6: end for
7: Output: Sl

It turns out that the theoretical guarantee depends on the supermodularity ratio and submodularity
ratio of a set function f , that we shall now briefly recall. The supermodularity ratio of a non-negative
set function f (Definition 6 of (Jagalur-Mohan and Marzouk, 2021)) with respect to the set U and a
cardinality constraint m ≥ 1 is

ηU,m := min
S⊆U ; T :|T |≤m,S∩T=∅

f(S ∪ T)− f(S)∑
e∈T [f(S ∪ {e})− f(S)]

,

while the submodularity ratio of f (Definition 32 of (Jagalur-Mohan and Marzouk, 2021)) with respect
to the set U and a cardinality constraint k ≥ 1 is

γU,m := min
S⊆U ; T :|T |≤m,S∩T=∅

∑
e∈T [f(S ∪ {e})− f(S)]

f(S ∪ T)− f(S)
.

We then state the lower bound pertaining to Algorithm 4 (see Theorem 7 of (Jagalur-Mohan and Mar-
zouk, 2021)).

Theorem 6.2 (Lower bound for batch greedy algorithm). Let P ∈ L(X) be π-stationary and U be the
ground set. Let f be a monotonically non-decreasing set function with f(∅) = 0. Algorithm 4 yields the
following lower bound

f(Sl) ≥

(
1−

l∏
i=1

(
1− qi · ηU,qi · γU,m

m

))
max

S⊆U ; |S|=m
f(S),

where Sl is the output set of Algorithm 4.

23

Since we have a monotonically mon-decreasing map (35) with D(P (∅)∥Π(∅)) = 0, we can apply the
Algorithm 4 (see Theorem 7 of (Jagalur-Mohan and Marzouk, 2021)) with the following lower bound.

Corollary 6.3. Let P ∈ L(X) be π-stationary and U = JdK be the ground set. Let f be (35) which is a
monotonically non-decreasing set function with f(∅) = 0. Algorithm 4 yields the following lower bound

f(Sl) ≥

(
1−

l∏
i=1

(
1− qi · ηU,qi · γU,m

m

))
max

S⊆JdK; |S|=m
f(S),

where Sl is the output set of Algorithm 4.

We now consider the special case where the stationary distribution π is of product form. In this case,
we can show the supermodularity of the map (35).

Lemma 6.4. The map (35) is supermodular if P is π-stationary where π is of product form.

Proof.

D(P (S)∥Π(S)) =
∑
x(S)

∑
y(S)

π(S)(x(S))P (S)(x(S), y(S)) ln
P (S)(x(S), y(S))

π(S)(y(S))

= −H(P (S))−
∑
x(S)

∑
y(S)

π(S)(x(S))P (S)(x(S), y(S)) lnπ(S)(y(S))

= −H(P (S))−
∑
y(S)

lnπ(S)(y(S))
∑
x(S)

π(S)(x(S))P (S)(x(S), y(S))

= −H(P (S)) +H(π(S)).

The last equation holds since P is π-stationary and hence

π(S)(y(S)) =
∑
x(S)

π(S)(x(S))P (S)(x(S), y(S)).

Since the stationary distribution π is of product form, then π = ⊗d
i=1π

(i), henceH(π(S)) =
∑

i∈S H(π(i)),

which is a modular function. Also, since H(P (S)) is submodular, then −H(P (S)) is supermodular.
Therefore, D(P (S)∥Π(S)) is supermodular because it is a sum of a supermodular function and a modular
function.

We proceed to investigate the following optimization problem when P is π-stationary with product
form π,

max
S⊆JdK; |S|≤m

f(S) = −D(P (S)∥Π(S)).

In view of Theorem 2.8, the following function g is monotonically non-decreasing and submodular
since f is submodular:

g(S) = f(S)− β +
∑
e∈S

(H(P (−e))−H(π(−e))−H(P) +H(π))

= f(S)− β +
∑
e∈S

(D(P∥P (e) ⊗ P (−e)) +D(P (e)∥Π(e))). (36)

Choosing β = 0, we denote the following non-negative modular function as

c(S) =
∑
e∈S

(D(P∥P (e) ⊗ P (−e)) +D(P (e)∥Π(e))). (37)

Since f(S) = g(S)− c(S), we apply Algorithm 2 to obtain a result with the following lower bound:

Corollary 6.5. Let P ∈ L(X) be π-stationary with π to be product form. In Algorithm 2, we take g as
in (36), c as in (37), and OPT = argmaxS⊆JdK; |S|≤m f(S). By Theorem 2.13, we have the following
lower bound

f(Sm) = −D(P (Sm)∥Π(Sm)) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm is the output set of Algorithm 2.

24

6.1 Supermodular minimization of distance to stationarity of the comple-
ment set D(P (−S)∥Π(−S))

In this section, we shall investigate the following map:

2JdK ∋ S 7→ D(P (−S)∥Π(−S)). (38)

Owing to Lemma 6.1, we first see that the map (38) is monotonically non-increasing. In addition, the
map (38) is supermodular if P is π-stationary with product form π in view of Lemma 2.4 and Lemma 6.4.

We are interested in the following optimization problem

max
S⊆JdK; |S|≤m

f(S) = −D(P (−S)∥Π(−S)),

as solving the above allows us to identify coordinates whose complement set is the closest to equilibrium
in one step.

Under the assumption of product form π, as the map (38) is monotonically non-increasing and super-
modular, f is monotonically non-decreasing and submodular. We apply the heuristic greedy algorithm
(Section 4 of (Nemhauser et al., 1978)) to obtain an approximate maximizer along with a (1 − e−1)-
approximation guarantee.

6.2 k-supermodular minimization of distance to stationarity of tensorized
keep-Si-in matrices D(⊗k

i=1P
(Si)∥ ⊗k

i=1 Π
(Si))

In this section, for given V ∈ (k + 1)JdK, we investigate the following map:

(k + 1)JdK ∋ S = (S1, . . . , Sk) 7→ f(S) = D(⊗k
i=1P

(Si)∥ ⊗k
i=1 Π

(Si)). (39)

We first give an orthant supermodularity result.

Lemma 6.6. The map (39) is orthant supermodular if P is π-stationary where π is of product form.

Proof. By the chain rule or tensorization property of KL divergence (see Theorem 2.15 and 2.16 of
(Polyanskiy and Wu, 2025)), we see that

D(⊗k
i=1P

(Si)∥ ⊗k
i=1 Π

(Si)) =

k∑
i=1

D(P (Si)∥Π(Si)).

We now take S ⪯ T and e ∈ JdK\Ti. By (3), we aim to show that ∆e,if(S) ≤ ∆e,if(T), which indeed
holds since

∆e,if(S) = D(P (Si∪{e})∥Π(Si∪{e}))−D(P (Si)∥Π(Si))

≤ D(P (Ti∪{e})∥Π(Ti∪{e}))−D(P (Ti)∥Π(Ti)) = ∆e,if(T),

because S 7→ D(P (S)∥Π(S)) is supermodular (see Lemma 6.4).

We are interested in the following optimization problem

max
S⪯V; |supp(Sm)|≤m

−f(S),

where f is orthant supermodular.
In view of Theorem 2.9, we have the following monotonically non-decreasing, k-submodular function

g:

g(S) = −f(S)− β +

k∑
i=1

∑
e∈Si

(D(P (Vi)∥P (e) ⊗ P (Vi\e)) +D(P (e)∥Π(e))). (40)

We take β = 0, and denote the non-negative modular function as

c(S) =

k∑
i=1

∑
e∈Si

(D(P (Vi)∥P (e) ⊗ P (Vi\e)) +D(P (e)∥Π(e))). (41)

Since −f(S) = g(S) − c(S), we apply Algorithm 3 to obtain an approximate maximizer along with a
lower bound.

25

Corollary 6.7. Let P ∈ L(X) be π-stationary with π be of product form and V ∈ (k + 1)JdK. In
Algorithm 3, we take g as in (40), c as in (41), and OPT = argmaxS⪯V; |supp(Sm)|≤m−f(S). Then
Theorem 2.16 gives the following lower bound

−f(Sm) ≥ (1− e−1)g(OPT)− c(OPT),

where Sm = (Sm,1, . . . , Sm,k) is the output of Algorithm 3.

6.3 k-supermodular minimization of distance to stationarity of tensorized
keep-Vi\Si-in matrices D(⊗k

i=1P
(Vi\Si)∥ ⊗k

i=1 Π
(Vi\Si))

For given V ∈ (k + 1)JdK, we investigate the following map:

{S ∈ (k + 1)JdK; S ⪯ V} ∋ S = (S1, . . . , Sk) 7→ D(⊗k
i=1P

(Vi\Si)∥ ⊗k
i=1 Π

(Vi\Si)). (42)

Theorem 6.8. The map (42) is monotonically non-increasing and k-supermodular if P is π-stationary
where π is of product form.

Proof. By the chain rule or tensorization property of KL divergence (see Theorem 2.15 and 2.16 of
(Polyanskiy and Wu, 2025)), we see that

D(⊗k
i=1P

(Vi\Si)∥ ⊗k
i=1 Π

(Vi\Si)) =

k∑
i=1

D(P (Vi\Si)∥Π(Vi\Si)),

which is a sum of k monotonically non-increasing and supermodular functions in view of Lemma 2.6.

We are interested in the following optimization problem

max
S⪯V; |supp(S)|≤m

g(S) = −D(⊗k
i=1P

(Vi\Si)∥ ⊗k
i=1 Π

(Vi\Si)). (43)

Since the map (42) is monotonically non-increasing and k-supermodular, then g is monotonically non-
decreasing and k-submodular. We apply Algorithm 3 to obtain a (1− e−1)-approximation guarantee.

Corollary 6.9. Let P ∈ L(X) be π-stationary with product form π and V ∈ (k + 1)JdK. We take g
as in (43), c = 0 and OPT = argmaxS⪯V; |supp(S)|≤m g(S). According to Theorem 2.16, we have the
following lower bound for Algorithm 3

g(Sm) ≥ (1− e−1)g(OPT),

where Sm = (Sm,1, . . . , Sm,k) is the output of Algorithm 3.

In the special case where k = 1 and V = JdK, the above Corollary reduces to the (1 − e−1)-
approximation guarantee as in Section 6.1.

7 Distance to factorizability over a fixed set D(P (W∪S)∥P (W) ⊗
P (S))

We fix a set W ⊆ JdK and investigate the following function:

{S ⊆ JdK; S ∩W = ∅} ∋ S 7→ f(S) = D(P (W∪S)∥P (W) ⊗ P (S)). (44)

We shall investigate the following optimization problem with cardinality constraint

max
S⊆JdK; S∩W=∅; |S|=m

f(S).

We pick S, T ⊆ {S ⊆ JdK; S ∩W = ∅} with S ⊆ T and compute that

f(S)− f(T) = [H(P (T∪W))−H(P (T))]− [H(P (S∪W))−H(P (S))] ≤ 0,

where the inequality follows from the property that S 7→ H(P (S)) is submodular (see Theorem 2.10).
Therefore f is monotonically non-decreasing. Also, f(∅) = D(P (W)∥P (W) ⊗ P (∅)) = 0. As such, we can
apply Algorithm 4 (see Theorem 6.2) with a lower bound.

26

Corollary 7.1. Let P ∈ L(X) be π-stationary, W ⊆ JdK, and U = JdK\W be the ground set. Let f be
(44) which is a monotonically non-decreasing set function with f(∅) = 0. Algorithm 4 yields the following
lower bound

f(Sl) ≥

(
1−

l∏
i=1

(
1− qi · ηU,qi · γU,m

m

))
max

S⊆JdK; S∩W=∅; |S|=m
f(S),

where Sl is the output set of Algorithm 4.

8 Numerical experiments of Part I1

We conduct a case study to evaluate the numerical performance of the submodular optimization algo-
rithms on the information-theoretic properties of multivariate Markov chains. We conduct numerical
experiments on the 10-dimensional Markov chains (d = 10) associated with the Curie-Weiss model and
the Bernoulli-Laplace level model (see Section 2.4 for details). For the Curie-Weiss model, we choose
T = 10 as the temperature, h = 1 as the external magnetic field. For the Bernoulli-Laplace level model,
we choose the swapping size s = 1. For the numerical experiments of the generalized distorted greedy
algorithm (Algorithm 3), we choose k = 3 and the ground set V = (V1, V2, V3), where V1 = {1, 2, 3, 4},
V2 = {5, 6, 7} and V3 = {8, 9, 10}.

8.1 Experiment results of Section 3

In this section, we report the numerical experiment results related to Section 3, which contains the
performance of the heuristic greedy algorithm (see Section 4 of (Nemhauser et al., 1978)), the distorted
greedy algorithm (see Corollary 3.2), and the generalized distorted greedy algorithm (see Corollary 3.5)
on the Bernoulli-Laplace level model and the Curie-Weiss model. For each experiment, we conduct
submodular optimization with cardinality constraint m, with m ranging from 1 to 10.

Greedy Distorted Greedy

m Subset Sm H
(
P (Sm)

)
Subset Sm H

(
P (Sm)

)
1 {10} 0.46094 {10} 0.46094
2 {3, 10} 0.83616 {1, 10} 0.83573
3 {1, 3, 10} 1.17940 {1, 2, 5} 1.18116
4 {1, 2, 3, 10} 1.49461 {1, 2, 3, 5} 1.50706
5 {1, 2, 3, 4, 10} 1.77855 {1, 2, 3, 4, 5} 1.80193
6 {1, 2, 3, 4, 5, 10} 2.03516 {1, 2, 3, 4, 5, 6} 2.06105
7 {1, 2, 3, 4, 5, 6, 10} 2.25729 {1, 2, 3, 4, 5, 6, 7} 2.28328
8 {1, 2, 3, 4, 5, 6, 7, 10} 2.43498 {1, 2, 3, 4, 5, 6, 7, 8} 2.45453
9 {1, 2, 3, 4, 5, 6, 7, 8, 10} 2.51897 {1, 2, 3, 4, 5, 6, 7, 8, 10} 2.51897
10 {1, 2, 3, 4, 5, 6, 7, 8, 10} 2.51897 {1, 2, 3, 4, 5, 6, 7, 8, 10} 2.51897

Table 1: Comparison of the greedy algorithm and the distorted greedy algorithm. Entropy rate of the
full chain of the Bernoulli-Laplace level model is H(P) = 1.96068.

1The code is available at: https://github.com/zheyuanlai/SubmodOptMC.

27

https://github.com/zheyuanlai/SubmodOptMC/

(a) Greedy and Algorithm 2 (b) Algorithm 3

Figure 1: Entropy rate against subset size for the three algorithms (B-L model).

Cardinality m Subset Sm,1 Subset Sm,2 Subset Sm,3 H(⊗3
i=1P

(Sm,i))
1 ∅ ∅ {10} 0.46094
2 ∅ {7} {10} 0.90046
3 ∅ {7} {8, 9} 1.26966
4 {4} {7} {8, 9} 1.70072
5 {4} {5, 7} {8, 9} 2.08692
6 {4} {5, 6, 7} {8, 9} 2.43035
7 {4} {5, 6, 7} {8, 9, 10} 2.71405
8 {3, 4} {5, 6, 7} {8, 9, 10} 3.10451
9 {1, 2, 4} {5, 6, 7} {8, 9, 10} 3.46267
10 {1, 2, 3, 4} {5, 6, 7} {8, 9, 10} 3.78968

Table 2: Performance evaluation of the generalized distorted greedy algorithm. Entropy rate of the full
chain of the Bernoulli-Laplace level model is H(P) = 1.96068.

For the Bernoulli-Laplace level model, Table 1 and Figure 1a show the entropy rates of the output
of the greedy algorithm and the distorted greedy algorithm (Algorithm 2); Table 2 and Figure 1b show
the entropy rates of the tensorized output of the generalized distorted greedy algorithm (Algorithm 3).

Greedy Distorted Greedy

m Subset Sm H
(
P (Sm)

)
Subset Sm H

(
P (Sm)

)
1 {1} 0.29085 {1} 0.29085
2 {1, 10} 0.57371 {1, 10} 0.57371
3 {1, 9, 10} 0.83933 {1, 9, 10} 0.83933
4 {1, 2, 9, 10} 1.09570 {1, 2, 9, 10} 1.09570
5 {1, 2, 6, 9, 10} 1.33953 {1, 2, 6, 9, 10} 1.33953
6 {1, 2, 4, 6, 9, 10} 1.57098 {1, 2, 4, 6, 9, 10} 1.57098
7 {1, 2, 4, 6, 8, 9, 10} 1.78757 {1, 2, 4, 6, 8, 9, 10} 1.78757
8 {1, 2, 3, 4, 6, 8, 9, 10} 1.98500 {1, 2, 3, 4, 6, 7, 9, 10} 1.98458
9 {1, 2, 3, 4, 6, 7, 8, 9, 10} 2.15793 {1, 2, 3, 4, 6, 7, 8, 9, 10} 2.15793
10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 2.29109 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 2.29109

Table 3: Comparison of the greedy algorithm and the distorted greedy algorithm. Entropy rate of the
full chain of the Curie-Weiss model is H(P) = 2.29109.

28

(a) Greedy and Algorithm 2 (b) Algorithm 3

Figure 2: Entropy rate against subset size for the three algorithms (C-W model).

Cardinality m Subset Sm,1 Subset Sm,2 Subset Sm,3 H(⊗3
i=1P

(Sm,i))
1 {1} ∅ ∅ 0.29085
2 {1} {7} ∅ 0.57067
3 {1} {7} {10} 0.86152
4 {1} {5, 7} {10} 1.13316
5 {1} {5, 7} {9, 10} 1.40732
6 {1} {5, 6, 7} {9, 10} 1.66816
7 {1} {5, 6, 7} {8, 9, 10} 1.93090
8 {1, 2} {5, 6, 7} {8, 9, 10} 2.20505
9 {1, 2, 4} {5, 6, 7} {8, 9, 10} 2.46832
10 {1, 2, 3, 4} {5, 6, 7} {8, 9, 10} 2.72011

Table 4: Performance evaluation of the generalized distorted greedy algorithm. Entropy rate of the full
chain of the Curie-Weiss model is H(P) = 2.29109.

For the Curie-Weiss model, Table 3 and Figure 2a show the entropy rates of the output of the greedy
algorithm and the distorted greedy algorithm (Algorithm 2); Table 4 and Figure 2b show the entropy
rates of the tensorized output of the generalized distorted greedy algorithm (Algorithm 3).

Notably, in Table 1 and Figure 1a, the distorted greedy algorithm outperforms the heuristic greedy
algorithm when the cardinality constraint equals to m = 3, 4, 5, 6, 7, 8. This is because, in the distorted
greedy algorithm, the distortion term (1− 1

m)m−(i+1) at each step is different with different cardinality
constraint m, which results in possibly better or different results than the heuristic greedy algorithm.
However, the distorted greedy algorithm does not necessarily select better subset than the heuristic
greedy algorithm, see the example of m = 2 in Table 1 and m = 8 in Table 3.

8.2 Experiment results of Section 4

We report the numerical experiment results related to Section 4, which contains the performance of
the heuristic greedy algorithm (Section 4 of (Nemhauser et al., 1978)), the distorted greedy algorithm
(Algorithm 2), and the generalized distorted greedy algorithm (Algorithm 3) on the Curie-Weiss model.

29

Greedy Distorted Greedy

m Subset Sm D
(
P∥P (Sm) ⊗ P (−Sm)

)
Subset Sm D

(
P∥P (Sm) ⊗ P (−Sm)

)
1 {6} 0.14837 {6} 0.14837
2 {2, 6} 0.24497 {3, 10} 0.24496
3 {2, 6, 9} 0.30927 {3, 7} 0.24525
4 {2, 5, 6, 9} 0.34590 {2, 7, 10} 0.30905
5 {2, 3, 5, 6, 9} 0.35758 {2, 3, 6, 10} 0.34590

Table 5: Comparison of the greedy algorithm and the distorted greedy algorithm.

(a) Greedy and Algorithm 2 (b) Algorithm 3

Figure 3: Distance to factorizability against subset size for the three algorithms.

For the experiments related to heuristic greedy and distorted greedy algorithms, since the map
S 7→ D(P∥P (S)⊗P (−S)) is symmetric, we conduct submodular maximization with cardinality constraint
m, with m only ranging from 1 to 5. The results are shown on Table 5 and Figure 3a. These results
show that although the distorted greedy algorithm has a lower bound as detailed in Corollary 4.1, the
performance is not guaranteed to be better than the heuristic greedy algorithm. We also conduct the
generalized distorted greedy algorithm as detailed in Corollary 4.3 with cardinality constraint m ranging
from 1 to 10, and the results are shown on Table 6 and Figure 3b.

m Subset Sm,1 Subset Sm,2 Subset Sm,3 D
(
P∥
(
⊗3

i=1P
(Sm,i)

)
⊗ P (−∪3

i=1Sm,i)
)

1 ∅ {6} ∅ 0.14836
2 ∅ {7} {8} 0.25388
3 {4} {7} {8} 0.33529
4 {4} {5, 7} {8} 0.39056
5 {2, 4} {5, 7} {8} 0.43104
6 {2, 4} {5, 7} {8, 10} 0.45978
7 {2, 4} {5, 6, 7} {8, 10} 0.46887
8 {2, 4} {5, 6, 7} {8, 10} 0.46887
9 {2, 4} {5, 6, 7} {8, 10} 0.46887
10 {2, 4} {5, 6, 7} {8, 10} 0.46887

Table 6: Performance evaluation of the generalized distorted greedy algorithm.

We conduct similar numerical experiments on the Bernoulli-Laplace level model. Among all cardi-
nality constraints, the greedy algorithm and the distorted greedy algorithm output Sm = {10}, and the
generalized distorted greedy algorithm outputs Sm,1 = Sm,2 = ∅, Sm,3 = {10}. The reason behind it is
that for a 10-dimensional Markov chain, the coordinate 10 is “far” from other coordinates.

30

8.3 Experiment results of Section 5

We report the numerical experiment results related to Section 5, which contains the performance of
the heuristic greedy algorithm (see Section 4 of (Nemhauser et al., 1978)), the distorted greedy algo-
rithm (see Corollary 5.1), and the generalized distorted greedy algorithm (see Corollary 5.5) on the
Bernoulli-Laplace level model and the Curie-Weiss model. For each experiment, we conduct supermod-
ular minimization with different cardinality constraint m’s.

For the Bernoulli-Laplace level model, Table 7 and Figure 4a show the distance to independence of
the outputs of the greedy algorithm and the distorted greedy algorithm (Algorithm 2). We note that
the distorted greedy algorithm often outperforms the greedy algorithm. Table 8 and Figure 4b show
the distance to independence of the tensorized outputs of the generalized distorted greedy algorithm
(Algorithm 3).

Greedy Distorted Greedy

m Subset Sm I(P (Sm)) Subset Sm I(P (Sm))
2 {1, 10} 0.05140 {1, 2} 0.03406
3 {1, 2, 10} 0.13505 {1, 2, 3} 0.10318
4 {1, 2, 3, 10} 0.24989 {1, 2, 3, 4} 0.20793
5 {1, 2, 3, 4, 10} 0.39701 {1, 2, 3, 4, 5} 0.34753
6 {1, 2, 3, 4, 5, 10} 0.57523 {1, 2, 3, 4, 5, 6} 0.52441
7 {1, 2, 3, 4, 5, 6, 10} 0.78911 {1, 2, 3, 4, 5, 6, 7} 0.74171
8 {1, 2, 3, 4, 5, 6, 7, 10} 1.05094 {1, 2, 3, 4, 5, 6, 7, 8} 1.01576
9 {1, 2, 3, 4, 5, 6, 7, 8, 10} 1.41226 {1, 2, 3, 4, 5, 6, 7, 8, 10} 1.41226
10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 2.41825 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 2.41825

Table 7: Comparison of the greedy algorithm and the distorted greedy algorithm (B-L model).

m Subset Sm,1 Subset Sm,2 Subset Sm,3 I
(
⊗3

i=1P
(Sm,i)

)
4 {1, 2} {5} {8} 0.03406
5 {1, 2} {5, 6} {8} 0.07999
6 {1, 2} {5, 6} {8, 9} 0.14286
7 {1, 2, 3} {5, 6} {8, 9} 0.21199
8 {1, 2, 3} {5, 6, 7} {8, 9} 0.30727
9 {1, 2, 3, 4} {5, 6, 7} {8, 9} 0.41202
10 {1, 2, 3, 4} {5, 6, 7} {8, 9, 10} 0.58925

Table 8: Performance evaluation of the generalized distorted greedy algorithm (B-L model).

(a) Greedy and Algorithm 2 (b) Algorithm 3

Figure 4: Distance to independence against subset size for the three algorithms (B-L model).

31

Greedy Distorted Greedy

m Subset Sm I(P (Sm)) Subset Sm I(P (Sm))
2 {4, 10} 0.00757 {1, 7} 0.00757
3 {4, 7, 10} 0.02350 {1, 6, 10} 0.02398
4 {2, 4, 7, 10} 0.04889 {1, 5, 7, 10} 0.04961
5 {2, 4, 6, 7, 10} 0.08592 {1, 3, 5, 7, 10} 0.08591
6 {2, 4, 6, 7, 8, 10} 0.13555 {1, 3, 5, 7, 8, 10} 0.13533
7 {2, 3, 4, 6, 7, 8, 10} 0.19989 {1, 3, 4, 5, 7, 8, 10} 0.20017
8 {2, 3, 4, 5, 6, 7, 8, 10} 0.28356 {1, 3, 4, 5, 6, 7, 8, 10} 0.28399
9 {2, 3, 4, 5, 6, 7, 8, 9, 10} 0.39102 {1, 3, 4, 5, 6, 7, 8, 9, 10} 0.39191
10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 0.53813 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 0.53813

Table 9: Comparison of the greedy algorithm and the distorted greedy algorithm (C-W model).

m Subset Sm,1 Subset Sm,2 Subset Sm,3 I
(
⊗3

i=1P
(Sm,i)

)
4 {1} {5, 7} {8} 0.00778
5 {1, 4} {5, 7} {8} 0.01556
6 {1, 4} {5, 7} {8, 10} 0.02376
7 {1, 3, 4} {5, 7} {8, 10} 0.04172
8 {1, 3, 4} {5, 6, 7} {8, 10} 0.06029
9 {1, 3, 4} {5, 6, 7} {8, 9, 10} 0.07972
10 {1, 2, 3, 4} {5, 6, 7} {8, 9, 10} 0.10911

Table 10: Performance evaluation of the generalized distorted greedy algorithm (C-W model).

(a) Greedy and Algorithm 2 (b) Algorithm 3

Figure 5: Distance to independence against subset size for the three algorithms (C-W model).

For the Curie-Weiss model, Table 9 and Figure 5a show the distance of independence of the outputs
of the greedy algorithm and the distorted greedy algorithm (Algorithm 2), in which these two algorithms
output similar results. Table 10 and Figure 5b show the distance of independence of the tensorized
outputs of the generalized distorted greedy algorithm (Algorithm 3).

In addition, we report the numerical experiment results related to the distance to independence of
the complement set, as detailed in Section 5.1 and Section 5.3. The performance of the greedy algorithm
on the two models is shown in Table 11 and Figure 6a, while the performance of the generalized distorted
greedy algorithm can be seen from Table 12 and Figure 6b.

32

Bernoulli-Laplace Curie-Weiss

m Subset Sm I(P (−Sm)) Subset Sm I(P (−Sm))
1 {9} 1.41226 {1} 0.39102
2 {9, 10} 1.01576 {1, 10} 0.28314
3 {8, 9, 10} 0.74171 {1, 5, 10} 0.19981
4 {7, 8, 9, 10} 0.52441 {1, 5, 7, 10} 0.13517
5 {6, 7, 8, 9, 10} 0.34753 {1, 3, 5, 7, 10} 0.08523
6 {5, 6, 7, 8, 9, 10} 0.20793 {1, 3, 5, 7, 8, 10} 0.04845
7 {4, 5, 6, 7, 8, 9, 10} 0.10318 {1, 3, 4, 5, 7, 8, 10} 0.02304
8 {3, 4, 5, 6, 7, 8, 9, 10} 0.03406 {1, 3, 4, 5, 7, 8, 9, 10} 0.00736

Table 11: Performance evaluation of greedy algorithm.

Bernoulli-Laplace Curie-Weiss

m Sm,1 Sm,2 Sm,3 I
(
⊗3

i=1P
(−Sm,i)

)
Sm,1 Sm,2 Sm,3 I

(
⊗3

i=1P
(−Sm,i)

)
1 ∅ ∅ {10} 0.41202 {2} ∅ ∅ 0.07972
2 {4} ∅ {10} 0.30727 {2} ∅ {9} 0.06029
3 {4} {7} {10} 0.21198 {2} {6} {9} 0.04172
4 {3, 4} {7} {10} 0.14286 {2, 3} {6} {9} 0.02376
5 {3, 4} {7} {9, 10} 0.07999 {2, 3} {6} {9, 10} 0.01556
6 {3, 4} {5, 7} {9, 10} 0.03406 {1, 2, 3} {6} {9, 10} 0.00778

Table 12: Performance evaluation of the generalized distorted greedy algorithm.

(a) Greedy (b) Algorithm 3

Figure 6: Distance to independence of the complement set against subset size.

8.4 Experiment results of Section 6

We first report the numerical experiment results related to Algorithm 4. For both the Bernoulli-Laplace
level model and the Curie-Weiss model, we consider the following two configurations of the batch greedy
algorithm to maximize D(P (S)∥Π(S)) subject to the cardinality constraint m:

• Approach 1: l = m and qi = 1 for i ∈ JlK;

• Approach 2: l = ⌈m2 ⌉, qi = 2 for i ∈ Jl − 1K; ql = 2 if m is even, ql = 1 if m is odd.

In Approach 1, we recover the heuristic greedy algorithm since we are adding one element per iteration.
We compare the performance of Approach 1 and Approach 2 for both models, and the results are shown
in Table 13 and Table 14. Although the stationary distribution π of the Bernoulli-Laplace level model and
the Curie-Weiss model are not of product form, we still apply the heuristic distorted greedy algorithm

33

as in Corollary 6.5, and the results are summarized in Table 15. The comparison of these algorithms on
the two models is shown in Figure 7.

From these results, one can conclude that the performance of Approach 1 is slightly better than
Approach 2, and the performance of the distorted greedy algorithm is the worst among the three ap-
proaches.

Approach 1 Approach 2

m Subset Sl D(P (Sl)∥Π(Sl)) Subset Sl D(P (Sl)∥Π(Sl))
1 {1} 0.26693 {1} 0.26693
2 {1, 2} 0.59421 {1, 2} 0.59421
3 {1, 2, 7} 0.98856 {1, 2, 7} 0.98856
4 {1, 2, 7, 10} 1.47330 {1, 2, 4, 7} 1.46082
5 {1, 2, 7, 9, 10} 2.07889 {1, 2, 4, 7, 10} 2.03226
6 {1, 2, 7, 8, 9, 10} 2.85834 {1, 2, 4, 7, 9, 10} 2.73225
7 {1, 2, 6, 7, 8, 9, 10} 3.70196 {1, 2, 4, 7, 8, 9, 10} 3.64286
8 {1, 2, 5, 6, 7, 8, 9, 10} 4.69790 {1, 2, 4, 6, 7, 8, 9, 10} 4.65621
9 {1, 2, 4, 5, 6, 7, 8, 9, 10} 5.91911 {1, 2, 4, 5, 6, 7, 8, 9, 10} 5.91911
10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 7.56130 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 7.56130

Table 13: Comparison of different configurations of the batch greedy algorithm (B-L model).

Approach 1 Approach 2

m Subset Sl D(P (Sl)∥Π(Sl)) Subset Sl D(P (Sl)∥Π(Sl))
1 {6} 0.40245 {6} 0.40245
2 {3, 6} 0.81082 {5, 6} 0.80739
3 {3, 6, 8} 1.22606 {5, 6, 8} 1.22234
4 {3, 4, 6, 8} 1.64626 {3, 5, 6, 8} 1.64615
5 {3, 4, 6, 8, 9} 2.07613 {2, 3, 5, 6, 8} 2.07601
6 {2, 3, 4, 6, 8, 9} 2.51741 {2, 3, 5, 6, 8, 9} 2.51771
7 {2, 3, 4, 5, 6, 8, 9} 2.97051 {2, 3, 4, 5, 6, 8, 9} 2.97051
8 {1, 2, 3, 4, 6, 8, 9} 3.44141 {2, 3, 4, 5, 6, 7, 8, 9} 3.44085
9 {1, 2, 3, 4, 6, 8, 9, 10} 3.93647 {1, 2, 3, 4, 5, 6, 7, 8, 9} 3.93568
10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 4.46975 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 4.46975

Table 14: Comparison of different configurations of the batch greedy algorithm (C-W model).

Bernoulli-Laplace level model Curie-Weiss model

m Subset Sm D(P (Sm)∥Π(Sm)) Subset Sm D(P (Sm)∥Π(Sm))
1 {10} 0.23219 {1} 0.39435
2 {1, 10} 0.57719 {1, 10} 0.79669
3 {1, 2, 10} 0.98552 {1, 2, 10} 1.20915
4 {1, 2, 3, 5} 1.45314 {1, 2, 9, 10} 1.63086
5 {1, 2, 3, 4, 5} 1.99871 {1, 2, 3, 9, 10} 2.06307
6 {1, 2, 3, 4, 5, 6} 2.63821 {1, 2, 3, 8, 9, 10} 2.50704
7 {1, 2, 3, 4, 5, 6, 7} 3.39168 {1, 2, 3, 4, 8, 9, 10} 2.96498
8 {1, 2, 3, 4, 5, 6, 7, 8} 4.30094 {1, 2, 3, 4, 5, 8, 9, 10} 3.43971
9 {1, 2, 3, 4, 5, 6, 7, 8, 10} 5.46950 {1, 2, 3, 4, 5, 6, 8, 9, 10} 3.93647
10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 7.56130 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 4.46975

Table 15: Performance evaluation of the distorted greedy algorithm.

34

(a) Bernoulli-Laplace level model (b) Curie-Weiss model

Figure 7: Distance to stationarity of the output against subset size.

We then report the numerical experiment results in Section 6.2, see Table 16 and Figure 8. Note
that since the stationary distributions of the Bernoulli-Laplace level model and the Curie-Weiss model
are not of product form, these simulations are heuristic in nature, as Corollary 6.7 does not provide a
theoretical guarantee in this setting.

Bernoulli-Laplace level model Curie-Weiss model
m Sm,1 Sm,2 Sm,3 Value Sm,1 Sm,2 Sm,3 Value
1 ∅ ∅ {10} 0.23191 {1} ∅ ∅ 0.39436
2 ∅ {7} {10} 0.48566 {1} ∅ {10} 0.78871
3 {4} {7} {10} 0.74787 {1} {7} {10} 1.19100
4 {3, 4} {7} {10} 1.07820 {1} {7} {9, 10} 1.59492
5 {3, 4} {5, 7} {10} 1.41218 {1, 2} {7} {9, 10} 1.99886
6 {3, 4} {5, 7} {8, 10} 1.76157 {1, 2} {6, 7} {9, 10} 2.40381
7 {1, 3, 4} {5, 7} {8, 10} 2.15778 {1, 2} {5, 6, 7} {9, 10} 2.81582
8 {1, 3, 4} {5, 6, 7} {8, 10} 2.56632 {1, 2, 3} {5, 6, 7} {9, 10} 3.22828
9 {1, 3, 4} {5, 6, 7} {8, 9, 10} 3.02745 {1, 2, 3} {5, 6, 7} {8, 9, 10} 3.64075
10 {1, 2, 3, 4} {5, 6, 7} {8, 9, 10} 3.49326 {1, 2, 3, 4} {5, 6, 7} {8, 9, 10} 4.06242

Table 16: Performance evaluation of Algorithm 3. “Value” refers to D(⊗3
i=1P

(Sm,i)∥ ⊗3
i=1 Π

(Sm,i)).

(a) Bernoulli-Laplace level model (b) Curie-Weiss model

Figure 8: Performance evaluation of the generalized distorted greedy algorithm.

35

We proceed to present the numerical experiment results in Section 6.1 and Section 6.3 (see Table 17,
Table 18, and Figure 9). Note that since the stationary distribution π of both models is not of product
form, we do not have the (1− e−1)-approximation guarantee.

Bernoulli-Laplace level model Curie-Weiss model

m Subset Sm D(P (−Sm)∥Π(−Sm)) Subset Sm D(P (−Sm)∥Π(−Sm))
1 {9} 5.46950 {10} 3.93568
2 {9, 10} 4.30094 {9, 10} 3.43908
3 {8, 9, 10} 3.39168 {8, 9, 10} 2.96487
4 {7, 8, 9, 10} 2.63821 {7, 8, 9, 10} 2.507645
5 {6, 7, 8, 9, 10} 1.99871 {6, 7, 8, 9, 10} 2.06420
6 {4, 6, 7, 8, 9, 10} 1.45314 {5, 6, 7, 8, 9, 10} 1.63242
7 {3, 4, 6, 7, 8, 9, 10} 0.98630 {4, 5, 6, 7, 8, 9, 10} 1.21075
8 {1, 3, 4, 6, 7, 8, 9, 10} 0.58961 {3, 4, 5, 6, 7, 8, 9, 10} 0.79828
9 {1, 2, 3, 4, 6, 7, 8, 9, 10} 0.25830 {2, 3, 4, 5, 6, 7, 8, 9, 10} 0.39435
10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 0.00000 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 0.00000

Table 17: Performance evaluation of the greedy algorithm.

Bernoulli-Laplace level model Curie-Weiss model
m Sm,1 Sm,2 Sm,3 Value Sm,1 Sm,2 Sm,3 Value
1 {4} ∅ ∅ 3.02668 {4} ∅ ∅ 3.64075
2 {4} ∅ {9} 2.56554 {4} ∅ {8} 3.22828
3 {4} {6} {9} 2.15700 {3, 4} ∅ {8} 2.81582
4 {1, 4} {6} {9} 1.76235 {3, 4} {5} {8} 2.40381
5 {1, 4} {6} {8, 9} 1.41297 {3, 4} {5, 6} {8} 1.99886
6 {1, 4} {5, 6} {8, 9} 1.07899 {2, 3, 4} {5, 6} {8} 1.59492
7 {1, 2, 4} {5, 6} {8, 9} 0.74955 {2, 3, 4} {5, 6} {8, 9} 1.19099
8 {1, 2, 3, 4} {5, 6} {8, 9} 0.48566 {2, 3, 4} {5, 6, 7} {8, 9} 0.78871
9 {1, 2, 3, 4} {5, 6, 7} {8, 9} 0.23191 {2, 3, 4} {5, 6, 7} {8, 9, 10} 0.39436
10 {1, 2, 3, 4} {5, 6, 7} {8, 9, 10} 0.00000 {1, 2, 3, 4} {5, 6, 7} {8, 9, 10} 0.00000

Table 18: Performance evaluation of Algorithm 3. “Value” refers to D(⊗3
i=1P

(Vi\Sm,i)∥⊗3
i=1 Π

(Vi\Sm,i)).

(a) Greedy (b) Algorithm 3

Figure 9: Distance to stationarity of the complement set against subset size.

8.5 Experiment results of Section 7

We perform Algorithm 4 with the following configuration: l = ⌈m2 ⌉, qi = 2 for i ∈ Jl − 1K; ql = 2 if m
is even, ql = 1 if m is odd. We choose the fixed subset as W = {1, 2, 3}. The performance of the batch

36

greedy algorithm on the two models is shown in Table 19 and Figure 10.

Bernoulli-Laplace level model Curie-Weiss model

m Subset Sl D(P (W∪Sl)∥P (W) ⊗ P (Sl)) Subset Sl D(P (W∪Sl)∥P (W) ⊗ P (Sl))
1 {10} 0.14671 {4} 0.02751
2 {9, 10} 0.26354 {4, 10} 0.05651
3 {8, 9, 10} 0.37787 {4, 5, 10} 0.08919
4 {7, 8, 9, 10} 0.49198 {4, 5, 9, 10} 0.12616
5 {6, 7, 8, 9, 10} 0.61908 {4, 5, 6, 9, 10} 0.17028
6 {5, 6, 7, 8, 9, 10} 0.79889 {4, 5, 6, 8, 9, 10} 0.22527
7 {4, 5, 6, 7, 8, 9, 10} 1.06993 {4, 5, 6, 7, 8, 9, 10} 0.30491

Table 19: Performance evaluation of the batch greedy algorithm.

Figure 10: Performance evaluation of the batch greedy algorithm.

37

Part II

Minimax factorization for a family of
multivariate Markov chains

9 The minimax optimization problem

We denote a feasible set F for the choice of factorizable transition matrix Q:

F = F(S) := {Q ∈ L(X); S = (S1, . . . , Sm) ∈ (m+ 1)JdK, Q = Q(S1) ⊗ . . .⊗Q(Sm)}.

We are interested in the following minimax optimization problem

min
Q∈F

max
P∈B

Dπ
KL(P∥Q), (45)

in words, we seek to find an optimal factorizable Q ∈ F that minimize the worst-case information loss
in approximating members of B.

Since F is not a convex set, we denote

M := {M ∈ R|X |×|X|}

as the set of matrices on the state space X and study the weighted geometric mean and the following
set:

A :=

{
A ∈M; ∃ l ∈ N, c ∈ Sl s.t. A(x, y) =

l∑
i=1

ci logQi(x, y), ∀x, y; Qi ∈ F , ∀i ∈ JlK

}
.

Lemma 9.1. The set A is convex.

Proof. We choose A,B ∈ A such that there exists c ∈ Sl, d ∈ Sk, Qi, Rj ∈ F for i ∈ JlK, j ∈ JkK and for
all x, y we have

A(x, y) =

l∑
i=1

ci logQi(x, y), B(x, y) =

k∑
i=1

di logRi(x, y).

We choose α ∈ [0, 1] and calculate that

αA(x, y) + (1− α)B(x, y) =

l∑
i=1

αci logQi(x, y) +

k∑
i=1

(1− α)di logRi(x, y).

We thus conclude that αA+ (1− α)B ∈ A, and hence A is convex.

We define the elementwise exponential of a matrix M ∈M to be expM , that is, for all x, y ∈ X ,

expM(x, y) := eM(x,y).

We then define the generalized KL divergence from the non-negative and not necessarily stochastic
matrix expA to P to be

D̃π
KL(P∥A) :=

∑
x,y

π(x)P (x, y) log
P (x, y)

expA(x, y)

=
∑
x,y

π(x)P (x, y) logP (x, y)−
∑
x,y

π(x)P (x, y)A(x, y),

which is linear in A, hence the map A ∋ A 7→ D̃π
KL(P∥A) is convex.

We study the following minimax optimization problem

min
A∈A

max
P∈B

D̃π
KL(P∥A), (46)

38

and we can reformulate it as

min
A∈A, r

r (47)

s.t. D̃π
KL(Pi∥A) ≤ r, ∀i ∈ JnK,

which is a constrained convex minimization problem.
Comparing problem (45) with problem (46), we note that for every Q ∈ F , we can define an associated

A ∈ A such that A(x, y) = logQ(x, y), and hence we have the following inequality:

min
Q∈F

max
P∈B

Dπ
KL(P∥Q) ≥ min

A∈A
max
P∈B

D̃π
KL(P∥A). (48)

Suppose A ∈ A such that expA(x, y) =
∏l

i=1 Qi(x, y)
ci for any x, y, we then show a Pythagorean

identity based on the proof of Theorem 2.22 of (Choi et al., 2024):

D̃π
KL(P∥A) =

∑
x,y

π(x)P (x, y) log
P (x, y)∏l

i=1 Qi(x, y)ci

= Dπ
KL(P∥ ⊗m

i=1 P
(Si)) +

∑
x,y

π(x)P (x, y) log
⊗m

i=1P
(Si)(x, y)∏l

j=1 Qj(x, y)cj

= Dπ
KL(P∥ ⊗m

i=1 P
(Si)) +

m∑
i=1

l∑
j=1

cjD
π
KL(P

(Si)∥Q(Si)
j) ≥ D̃π

KL(P∥A∗), (49)

where A∗ = A∗(S1, . . . , Sm, P) ∈ A is defined to be

A∗(x, y) := log(⊗m
i=1P

(Si)(x, y)).

Inspired by (49) and Lemma 2.2, for given w ∈ Sn, we show a weighted version of Pythagorean
identity for generalized KL divergence:

n∑
i=1

wiD̃
π
KL(Pi∥A) =

n∑
i=1

wi

∑
x,y

π(x)Pi(x, y) log
Pi(x, y)∏l

k=1 Qk(x, y)ck

=

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P
(Sj)

) +

n∑
i=1

wi

∑
x,y

π(x)Pi(x, y) log
⊗m

j=1P
(Sj)

(x, y)∏l
k=1 Qk(x, y)ck

=

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P
(Sj)

) +

m∑
j=1

l∑
k=1

ckD
π(Sj)

KL (P
(Sj)∥Q(Sj)

k) (50)

≥
n∑

i=1

wiD̃
π
KL(Pi∥A∗

n(w)),

where A∗
n(w) = A∗

n(w, S1, . . . , Sm,B) ∈ A is defined to be, for all x, y ∈ X ,

A∗
n(x, y) := log(⊗m

j=1P
(Sj)

)(x, y).

In the special case that n = 1, we recover that A∗
1 = A∗.

For the problem (47), we denote the Lagrangian L : R+ ×A× Rn
+ to be

L(r,A,w) := r +

n∑
i=1

wi(D̃
π
KL(Pi∥A)− r), (51)

where w is the associated Lagrangian multiplier.
From the Pythagorean identity (50), the dual problem of (47) can be written as

max
w∈Rn

+

min
r≥0, A∈A

L(r,A,w) = max
w∈Sn

min
A∈A

n∑
i=1

wiD̃
π
KL(Pi∥A) = max

w∈Sn

n∑
i=1

wiD̃
π
KL(Pi∥A∗

n(w)). (52)

The main results in this section are that strong duality holds for problem (47), and problem (45) and
(46) are equivalent. We write the results in the following theorem.

39

Theorem 9.2. 1. The strong duality holds for problem (47) and there exists w∗ ∈ Sn such that

min
A∈A

max
P∈B

D̃π
KL(P∥A) = max

w∈Sn

n∑
i=1

wiD̃
π
KL(Pi∥A∗

n(w)) =

n∑
i=1

w∗
i D̃

π
KL(Pi∥A∗

n(w
∗)).

2. Suppose the pair (A, r) ∈ A × R+ minimizes the primal problem (47) and w∗ ∈ Sn maximizes the
dual problem (52), then the following complementary slackness results hold: for i ∈ JnK, we have

D̃π
KL(Pi∥A)

{
= r, if w∗

i > 0;

≤ r, if w∗
i = 0.

3. Problems (45) and (46) are equivalent, i.e.

min
Q∈F

max
P∈B

Dπ
KL(P∥Q) = min

A∈A
max
P∈B

D̃π
KL(P∥A).

4. The same w∗ ∈ Sn from item (1) satisfies

min
Q∈F

max
P∈B

Dπ
KL(P∥Q) = max

w∈Sn

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

k=1 P (w)(Sk)) =

n∑
i=1

w∗
iD

π
KL(Pi∥ ⊗m

k=1 P (w∗)(Sk)).

5. The map

Sn ∋ w 7→
n∑

i=1

wiD
π
KL(Pi∥ ⊗m

k=1 P (w)(Sk))

is concave in w.

Proof. We first show item (1), i.e., strong duality holds for problem (47). We shall show that the Slater’s
qualification is verified (see Section 5.2.3 of (Boyd and Vandenberghe, 2004) and Appendix A of (Beck,
2017)), which requires that the constraints in (47) are strictly feasible. We take any A and

r = max
i∈JnK

D̃π
KL(Pi∥A) + 1 > D̃π

KL(Pl∥A), ∀l ∈ JnK,

hence the strong duality holds. Therefore we have

min
A∈A

max
P∈B

D̃π
KL(P∥A) = max

w∈Sn

n∑
i=1

wiD̃
π
KL(Pi∥A∗

n(w)) =

n∑
i=1

w∗
i D̃

π
KL(Pi∥A∗

n(w
∗)).

As the strong duality in item (1) holds, by Section 5.5.2 of (Boyd and Vandenberghe, 2004), the comple-
mentary slackness condition holds, i.e.

w∗
i (D̃

π
KL(Pi∥A)− r) = 0,

which is equivalent to

D̃π
KL(Pi∥A)

{
= r, if w∗

i > 0;

≤ r, if w∗
i = 0,

for all i ∈ JnK, hence it proves item (2).
We proceed to prove item (3). Let j ∈ JnK be an index where w∗

j > 0, we want to show

D̃π
KL(Pj∥A∗

n(w
∗)) = max

l∈JnK
D̃π

KL(Pl∥A∗
n(w

∗)).

As it is clear to see that D̃π
KL(Pj∥A∗

n(w
∗)) ≤ maxl∈JnK D̃

π
KL(Pl∥A∗

n(w
∗)), we then assume the contrary

that

D̃π
KL(Pj∥A∗

n(w
∗)) < max

l∈JnK
D̃π

KL(Pl∥A∗
n(w

∗)).

40

That is, there exists an index l∗ such that

D̃π
KL(Pj∥A∗

n(w
∗)) < D̃π

KL(Pl∗∥A∗
n(w

∗)).

By strong duality, we have w∗
l∗ = 0, then by complementary slackness in item (2), we have

D̃π
KL(Pl∗∥A∗

n(w
∗)) ≤ r = D̃π

KL(Pj∥A∗
n(w

∗)) < D̃π
KL(Pl∗∥A∗

n(w
∗)),

which leads to a contradiction. It therefore yields

D̃π
KL(Pj∥A∗

n(w
∗)) = max

l∈JnK
D̃π

KL(Pl∥A∗
n(w

∗)).

By recalling the definition of generalized KL divergence and (48), we have

min
Q∈F

max
P∈B

Dπ
KL(P∥Q) ≥ min

A∈A
max
P∈B

D̃π
KL(P∥A) = max

w∈Sn

n∑
i=1

wiD̃
π
KL(Pi∥A∗

n(w))

= max
l∈JnK

D̃π
KL(Pl∥A∗

n(w
∗)) = D̃π

KL(Pj∥A∗
n(w

∗))

= max
P∈B

Dπ
KL(P∥ ⊗m

k=1 P (w∗)(Sk)) ≥ min
Q∈F

max
P∈B

Dπ
KL(P∥Q),

therefore we obtain

min
Q∈F

max
P∈B

Dπ
KL(P∥Q) = min

A∈A
max
P∈B

D̃π
KL(P∥A),

hence problem (45) and problem (46) are equivalent. Therefore, for the w∗ ∈ Sn in item (1), we have

min
Q∈F

max
P∈B

Dπ
KL(P∥Q) = min

A∈A
max
P∈B

D̃π
KL(P∥A) =

n∑
i=1

w∗
i D̃

π
KL(Pi∥A∗

n(w
∗))

=

n∑
i=1

w∗
iD

π
KL(Pi∥ ⊗m

k=1 P (w∗)(Sk)),

which proves item (4).
We then show item (5). From (52), we have

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

k=1 P (w)(Sk)) =

n∑
i=1

wiD̃
π
KL(Pi∥A∗

n) = min
r≥0, A∈A

L(r,A,w),

hence the map

Sn ∋ w 7→
n∑

i=1

wiD
π
KL(Pi∥ ⊗m

k=1 P (w)(Sk))

is concave since it is the Lagrangian dual function of problem (47) (see Section 5.1.2 of (Boyd and
Vandenberghe, 2004)).

10 An information-theoretic game

Inspired by the reversiblization entropy games in (Choi and Wolfer, 2025), we cast the minimax problem
as a two-player zero-sum game between Nature and a probabilist. Nature chooses a transition probability
matrix P ∈ B, while the probabilist chooses an approximating factorizable transition matrix Q ∈ F =
F(S). The payoff is the KL divergence Dπ

KL(P∥Q), which Nature aims to maximize while the probabilist
aims to minimize.

In the pure strategy game, Nature selects a single P ∈ B and the probabilist selects a single Q ∈ F . In
the mixed strategy game, Nature is permitted to randomize over B according to a probability distribution
µ ∈ P(B) (which corresponds to a weight vector w ∈ Sn), while the probabilist still chooses a single
Q ∈ F .

41

We adapt the following notation for some related minimax and maximin values:

V = V (S,B) = min
Q∈F

max
µ∈P(B)

∫
B
Dπ

KL(P∥Q)µ(dP),

V = V (S,B) = max
µ∈P(B)

min
Q∈F

∫
B
Dπ

KL(P∥Q)µ(dP),

v = v(S,B) = min
Q∈F

max
P∈B

Dπ
KL(P∥Q),

v = v(S,B) = max
P∈B

min
Q∈F

Dπ
KL(P∥Q).

From item (4) of Theorem 9.2, the pure-strategy minimax value v is equivalent to the dual problem:

v = min
Q∈F

max
P∈B

Dπ
KL(P∥Q) = max

w∈Sn

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P
(Sj)

). (53)

The following theorem establishes the existence of a mixed-strategy Nash equilibrium (see Section 3
of (Osborne and Rubinstein, 1994)), which is a foundational result in game theory.

Theorem 10.1 (Existence of mixed strategy Nash equilibrium). Consider the two-person mixed strategy
game with respect to parameters (S,B),

1. The mixed strategy Nash equilibrium always exists. That is, the value of the game is well-defined
and given by

V (S,B) = V (S,B) = max
w∈Sn

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P
(Sj)

).

2. The mixed strategy Nash equilibrium is attained at (Q∗, µ∗), where µ∗ is represented by the optimal
weight vector w∗ ∈ Sn and Q∗ is the information projection of the corresponding weighted average
P (w∗) onto F , i.e.

Q∗ = ⊗m
j=1P (w∗)(Sj).

Proof. We first show existence in item (1). By Proposition 3.10 of (Choi and Wolfer, 2025), we have
the standard minimax inequalities v(S,B) ≥ V (S,B) ≥ V (S,B). We can also establish a lower bound
for V by restricting Nature’s strategy space from all probability measures P(B) to the simplex of finite
measures Sn:

V = V (S,B) = max
µ∈P(B)

min
Q∈F

∫
B
Dπ

KL(P∥Q)µ(dP)

≥ max
w∈Sn

min
Q∈F

n∑
i=1

wiD
π
KL(Pi∥Q)

= max
w∈Sn

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P
(Sj)

) = v,

where the second last equality comes from Lemma 2.2 and the final equality comes from (53). We have
thus shown the chain of inequalities v ≥ V ≥ V ≥ v, which enforces equality throughout. This implies
V = V , confirming that the mixed-strategy Nash equilibrium exists.

Item (2) follows from item (1). At the mixed-strategy Nash equilibrium, the pair of optimal strategies
(Q∗, µ∗) is composed of Nature’s optimal strategy µ∗, which is represented by the optimal weight vector
w∗ ∈ Sn, and the probabilist’s optimal pure strategy Q∗ ∈ F . Nature’s strategy w∗ is the solution to the
dual maximization problem as in item (4) of Theorem 9.2, identifying the “worst-case” mixture in B. In
response to this specific mixture, the probabilist’s unique best response Q∗ is the information projection
of the corresponding weighted average model P (w∗) onto the set of factorizable F , which is explicitly
given by Q∗ = ⊗m

j=1P (w∗)(Sj).

42

11 A projected subgradient algorithm

From Theorem 9.2, since problems (45) and (46) are equivalent (item (3)), hence by item (4), it suffices
to solving the following convex minimization problem:

min
w∈Sn

h(w), (54)

where h(w) = −
∑n

i=1 wiD
π
KL(Pi∥ ⊗m

k=1 P (w)(Sk)) is convex from item (5). We now compute a sub-
gradient of h, through which we aim to propose a projected subgradient algorithm with theoretical
guarantee.

Theorem 11.1 (Subgradient of h and an upper bound of its l2-norm). A subgradient of h at v ∈ Sn is
given by g = g(v) = (g1, . . . , gn) ∈ Rn, where for all i ∈ JnK, we have

gi = gi(v) = Dπ
KL(Pn∥ ⊗m

k=1 P (v)(Sk))−Dπ
KL(Pi∥ ⊗m

k=1 P (v)(Sk)).

The subgradient g satisfies that, for all w,v ∈ Sn,

h(w) ≥ h(v) +

n∑
i=1

gi · (wi − vi).

Moreover, the l2-norm of g(v) is bounded above by

∥g∥22 =
n∑

i=1

g2i ≤ n

(
|X | sup

v∈Sn; i∈JnK; Pi(x,y)>0

Pi(x, y) ln
Pi(x, y)

⊗m
k=1P (v)(Sk)(x, y)

)2

:= B.

Proof. By the Pythagorean identity (Lemma 2.2), we have

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

k=1 P (w)(Sk)) ≤
n∑

i=1

wiD
π
KL(Pi∥ ⊗m

k=1 P (v)(Sk))

for any w,v ∈ Sn. Hence,

h(w)− h(v) = −
n∑

i=1

wiD
π
KL(Pi∥ ⊗m

k=1 P (w)(Sk)) +

n∑
i=1

viD
π
KL(Pi∥ ⊗m

k=1 P (v)(Sk))

≥ −
n∑

i=1

(wi − vi)D
π
KL(Pi∥ ⊗m

k=1 P (v)(Sk))

= −
n∑

i=1

(wi − vi)D
π
KL(Pi∥ ⊗m

k=1 P (v)(Sk)) +

n∑
i=1

(wi − vi)D
π
KL(Pn∥ ⊗m

k=1 P (v)(Sk))

=

n∑
i=1

(wi − vi)gi,

where the second last equation holds because w,v ∈ Sn, and hence
∑n

i=1(wi − vi) = 0.
We proceed to prove the upper bound on the l2-norm. We first show the upper bound of the KL

divergence term:

Dπ
KL(Pi∥ ⊗m

k=1 P (v)(Sk)) =
∑
x∈X

π(x)
∑
y∈X

Pi(x, y) ln
Pi(x, y)

⊗m
k=1P (v)(Sk)(x, y)

≤ |X | sup
v∈Sn; i∈JnK; Pi(x,y)>0

Pi(x, y) ln
Pi(x, y)

⊗m
k=1P (v)(Sk)(x, y)

=

√
B

n
,

and then we have

∥g∥22 =

n∑
i=1

g2i ≤
n∑

i=1

max
{
Dπ

KL(Pn∥ ⊗m
k=1 P (v)(Sk))2, Dπ

KL(Pi∥ ⊗m
k=1 P (v)(Sk))2

}
≤ nmax

l∈JnK
Dπ

KL(Pl∥ ⊗m
k=1 P (v)(Sk))2 ≤ n ·

√
B

n

2

= B.

43

Inspired by Algorithm 1 of (Choi and Wolfer, 2025), we propose a projected subgradient algorithm
to solve problem (54). In Algorithm 5, we conduct the projected subgradient algorithm for t iterations.
At each iteration, we first update the weight parameters via subgradient,

v(i) = w(i−1) − η · g(w(i−1)),

where η > 0 is the stepsize of the algorithm while we take g as in Theorem 11.1, the subgradient of h.
In the second step, the updated weight v(i) is to be projected onto the n-probability-simplex Sn, i.e.

w(i) = argmin
w∈Sn

∥w − v(i)∥22,

which can be accomplished by existing projection algorithms onto a simplex (see e.g. (Condat, 2016)).
Note that the subgradient algorithm is not a descent algorithm, hence the monotonicity of h(w) among
different iterations is not guaranteed, see Section 13.1 for examples.

Algorithm 5 A projected subgradient algorithm to solve problem (54)

Require: Initial weight value w(0) ∈ Sn, set {Pi}ni=1, target distribution π, stepsize η > 0, and number
of iterations t

1: for i = 1 to t do
2: v(i) ← w(i−1) − η · g(w(i−1)) ▷ Update via subgradient descent
3: w(i) ← argmin

w∈Sn

∥w − v(i)∥22 ▷ Project onto Sn
4: end for
5: Output: The sequence

(
w(i)

)t
i=1

The rest of the section is devoted to providing a theoretical guarantee for Algorithm 5. We first prove
an upper bound of Algorithm 5.

Theorem 11.2 (Upper bound of Algorithm 5). Consider Algorithm 5 with its outputs (w(i))ti=1, we
have

h(wt)− h(w∗) ≤ n

2ηt
+

ηB

2
,

where wt = 1
t

∑t
i=1 w

(i) and w∗ is the optimal solution to problem (54). Furthermore, if we choose

constant stepsize η =
√

n
Bt , we have

h(wt)− h(w∗) ≤
√

nB

t
.

In addition, given any ϵ > 0, if we further choose

t =

⌈
nB

ϵ2

⌉
,

then we can reach an ϵ-close value to h(w∗) such that

h(wt)− h(w∗) ≤ ϵ.

Proof. For all i ∈ JtK, due to projection, we have

∥w(i+1) −w∗∥22 ≤ ∥v(i+1) −w∗∥22 = ∥w(i) − η · g(w(i))−w∗∥22
= ∥w(i) −w∗∥22 + η2∥g(w(i))∥2 − 2ηg(w(i))(w(i) −w∗)

≤ ∥w(i) −w∗∥22 + η2B − 2ηg(w(i))(w(i) −w∗),

where the last inequality come from the upper bound in Theorem 11.1. We then apply the definition of
subgradient g in Theorem 11.1, and it leads to

h(w(i))− h(w∗) ≤ g(w(i)) · (w(i) −w∗)

≤ 1

2η

(
∥w(i) −w∗∥22 − ∥w(i+1) −w∗∥22

)
+

ηB

2
.

44

We then take summation on i from 1 to t and obtain

t∑
i=1

(h(w(i))− h(w∗)) ≤ 1

2η

(
∥w(1) −w∗∥22 − ∥w(t+1) −w∗∥22

)
+

ηBt

2

≤ 1

2η
∥w(i) −w∗∥22 +

ηBt

2
≤ n

2η
+

ηBt

2
,

where the last inequality holds because w(i),w∗ ∈ Sn. From the convexity of h, we have

h(wt)− h(w∗) ≤ 1

t

(
t∑

i=1

(h(w(i))− h(w∗))

)
≤ n

2ηt
+

ηB

2
.

By AM-GM inequality, the right hand side is minimized when we choose stepsize η =
√

n
Bt , we then

obtain

h(wt)− h(w∗) ≤
√

nB

t
.

We proceed to discuss the convergence rate of Algorithm 5. We define the π-weighted total variation
distance between Q and P as

Dπ
TV(P∥Q) :=

1

2

∑
x,y∈X

π(x)|P (x, y)−Q(x, y)|,

and show the convergence rate of Algorithm 5.

Theorem 11.3 (Convergence rate of Algorithm 5). Consider Algorithm 5 and its outputs (w(i))ti=1, and
the stepsize is chosen to be η =

√
n
Bt , we have

Dπ
TV(⊗m

k=1P (w)(Sk)∥ ⊗m
k=1 P (w∗)(Sk)) = O

(
1√
t

)
.

Proof. From the convexity of KL divergence Dπ
KL(·∥·) and Equation 3.25 of (Csiszár, 1972), we have a

constant C such that

Dπ
TV(⊗m

k=1P (w)(Sk)∥ ⊗m
k=1 P (w∗)(Sk))

≤ C

(
n∑

i=1

wt
iD

π
KL(Pi∥ ⊗m

k=1 P (w∗)(Sk))−
n∑

i=1

wt
iD

π
KL(Pi∥ ⊗m

k=1 P (w(i))(Sk))

)

≤ C

(
max
i∈JnK

Dπ
KL(Pi∥ ⊗m

k=1 P (w∗)(Sk)) + h(wt)

)
= C(h(wt)− h(w∗)) = O

(
1√
t

)
,

where the second last equality comes from the complementary slackness introduced in item (2) of Theo-
rem 9.2, and the last equality comes from Theorem 11.2 as we choose the stepsize η =

√
n
Bt .

Remark 11.4. Theorem 11.2 and Theorem 11.3 establish the theoretical guarantee of Algorithm 5
through the averaged output wt. However, in numerical experiments, we choose argmini∈JtK h(w

(i))
as the result for practical purpose, see Section 13.1.

12 A max-min-max submodular optimization problem and a
two-layer subgradient-greedy algorithm

Recall that in earlier sections we consider the minimax problem (45) and investigate its implications in
the two-person game between Nature and probabilist. As the set F(S) depends on the choice of the
partition S, in this section we consider a max-min-max optimization problem of the form

max
S∈(m+1)JdK

min
Q∈F

max
µ∈P(B)

∫
B
Dπ

KL(P∥Q)µ(dP).

45

In words, we seek to find an optimal partition the maximizes the minimal worst-case information loss.
We write

f(S,w) :=

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P (w)(Sj)), (55)

and from the mixed-strategy Nash equilibrium (item (1) of Theorem 10.1), we can denote the inner part
as

f(S,w∗(S)) = min
Q∈F

max
µ∈P(B)

∫
B
Dπ

KL(P∥Q)µ(dP)

= max
w∈Sn

n∑
i=1

wiD
π
KL(Pi∥ ⊗m

j=1 P (w)(Sj)), S ∈ (m+ 1)JdK

=

n∑
i=1

w∗
iD

π
KL(Pi∥ ⊗m

j=1 P (w∗)(Sj)), S ∈ (m+ 1)JdK

=

n∑
i=1

w∗
iD

π
KL(Pi∥(⊗m−1

j=1 P (w∗)(Sj))⊗ P (w∗)(−supp(S))), S ∈ mJdK,

where we write
w∗ = w∗(S) = argmax

w∈Sn

f(S,w).

We furthermore choose the ground set V ∈ mJdK and cardinality constraint l, and instead consider
the max-min-max optimization problem

max
S⪯V; |supp(S)|≤l

f(S,w∗(S)). (56)

We then investigate the following map for fixed w ∈ Sn through the lens of submodularity:

mJdK ∋ S 7→ f(S) = f(S,w) :=

n∑
i=1

wiD
π
KL(Pi∥(⊗m−1

j=1 P (w)(Sj))⊗ P (w)(−supp(S))). (57)

Lemma 12.1. The map (57) is orthant submodular.

Proof. We shall prove that ∆e,jf(S) ≥ ∆e,jf(T) from the definition of orthant submodularity, where we
choose S ⪯ T and e /∈ supp(T).

∆e,jf(S)−∆e,jf(T) =

n∑
i=1

wi

(
H(P

(Sj∪{e})
)−H(P

(Sj)
) +H(P

(−supp(S)∪{e})
)−H(P

(−supp(S))
)
)

−
n∑

i=1

wi

(
H(P

(Tj∪{e})
)−H(P

(Tj)
) +H(P

(−supp(T)∪{e})
)−H(P

(−supp(T))
)
)

=
[(

H(P
(Sj∪{e})

)−H(P
(Sj)

)
)
−
(
H(P

(Tj∪{e})
)−H(P

(Tj)
)
)]

+
[(

H(P
(−supp(T))

)−H(P
(−supp(T)∪{e})

)
)
−
(
H(P

(−supp(S))
)−H(P

(−supp(S)∪{e})
)
)]

.

Since the map S 7→ H(P
(S)

) is submodular (see item 4 of Theorem 2.10) and S ⪯ T, then we have(
H(P

(Sj∪{e})
)−H(P

(Sj)
)
)
−
(
H(P

(Tj∪{e})
)−H(P

(Tj)
)
)
≥ 0,(

H(P
(−supp(T))

)−H(P
(−supp(T)∪{e})

)
)
−
(
H(P

(−supp(S))
)−H(P

(−supp(S)∪{e})
)
)
≥ 0.

Therefore ∆e,jf(S)−∆e,jf(T) ≥ 0 and hence the map (57) is orthant submodular.

46

In view of Theorem 2.9, since the map (57) is orthant submodular, then for any β = β(w) ∈ R, if
S ⪯ V, we have the following monotonically non-decreasing (m− 1)-submodular function:

g(S,w) := f(S)− β +

m−1∑
j=1

∑
e∈Sj

(f(V1, . . . , Vj , . . . , Vm−1))− f(V1, . . . , Vj\{e}, . . . , Vm−1))

= f(S)− β +

n∑
i=1

m−1∑
j=1

∑
e∈Sj

wi

[
Dπ

KL(P
(Vj)∥P (Vj\{e}) ⊗ P

(e)
)−Dπ

KL(P
(−supp(V)\{e})∥P (−supp(V)) ⊗ P

(e)
)
]

= f(S)− β +

m−1∑
j=1

∑
e∈Sj

[
Dπ

KL(P
(Vj)∥P (Vj\{e}) ⊗ P

(e)
)−Dπ

KL(P
(−supp(V)\{e})∥P (−supp(V)) ⊗ P

(e)
)
]
,

(58)

where the last equality comes from the fact that w ∈ Sn.
We also obtain the following modular function:

c(S,w) = −β +

m−1∑
j=1

∑
e∈Sj

[
Dπ

KL(P
(Vj)∥P (Vj\{e}) ⊗ P

(e)
)−Dπ

KL(P
(−supp(V)\{e})∥P (−supp(V)) ⊗ P

(e)
)
]
,

(59)

where we take

β = β(w) ≤ −
m−1∑
j=1

∑
e∈Sj

[
H(P (w)(−supp(V)∪{e})) +H(P (w)(e))

]
(60)

and write c(S,w) ≤ C to ensure that 0 ≤ c ≤ C. Therefore, for fixed w ∈ Sn,

f(S,w) = g(S,w)− c(S,w),

where f can be written as the difference between a (m − 1)-submodular function and a non-negative
modular function.

Remark 12.2. If we consider the optimization problem (56) with fixed w ∈ Sn, i.e.,

max
S⪯V; |supp(S)|≤l

f(S) = f(S,w),

we can apply the generalized distorted greedy algorithm (Algorithm 3) with g as in (58), c as in (59),
and β as in (60) to solve the problem. Furthermore, Theorem 2.16 gives the following lower bound:

f(Sl,w) ≥ (1− e−1)g(OPT,w)− c(OPT,w),

where Sl = (Sl,1, . . . , Sl,m−1) is the final output of Algorithm 3 and OPT = argmaxS⪯V; |supp(S)|≤l f(S).

We propose Algorithm 6 to solve problem (56). Algorithm 6 is a two-layer subgradient-greedy al-
gorithm, which combines the outer generalized distorted greedy algorithm (Algorithm 3) and the inner
projected subgradient algorithm (Algorithm 5). Specifically, we conduct totally l rounds of general-
ized distorted greedy algorithm: at the i-th round, we first fix Si and apply the projected subgra-
dient algorithm on fixed Si for K iterations to maximize the objective function f(Si, ·); we then fix

wi+1 =
∑K

k=1 w
(k)
i+1 and perform generalized distorted greedy algorithm to obtain Si+1. We proceed to

state and prove a lower bound of Algorithm 6 in Theorem 12.3.

Theorem 12.3 (Lower bound of Algorithm 6). Algorithm 6 provides the following lower bound:

f(Sl,wl) >
1

l

l∑
i=1

[αig(OPT(wi),wi)− c(OPT(wi),wi)]−O

(
l

(√
nB

K
+ C

))
,

where (Sl,wl) is the output of Algorithm 6, αi = (1− 1
l)

l−i, and

OPT(w) = argmax
S⪯V; |supp(S)|≤l

f(S,w).

47

Algorithm 6 A two-layer subgradient-greedy algorithm to solve problem (56)

Require: f as in (55); g as in (58); c as in (59); subgradient g as in Theorem 11.1; cardinality constraint
l; partition of ground set V = (V1, . . . , Vm−1) ∈ mJdK; inner iteration number K

1: Initialize S0 = (S0,1, . . . , S0,m−1)← ∅ and w
(K)
0 = (1

m , . . . , 1
m)

2: Compute bound B as in Theorem 11.1 and stepsize η =
√

n
BK

3: for i = 0 to l − 1 do
4: w

(0)
i+1 ← w

(K)
i

5: for k = 0 to K − 1 do
6: v← w

(k)
i+1 − η · g(Si,w

(k)
i+1)

7: w
(k+1)
i+1 ← argmin

w∈Sn

∥w − v∥22
8: end for
9: wi+1 ← 1

K

∑K
k=1 w

(k)
i+1

10: (j∗, e∗)← argmax
j∈Jm−1K; e∈Vj\Si,j

{(
1− 1

l

)l−(i+1)
∆e,jg(Si,wi+1)− c({e},wi+1)

}
11: if

(
1− 1

l

)l−(i+1)
∆e∗,j∗g(Si,wi+1)− c({e∗},wi+1) > 0 then

12: Si+1,j∗ ← Si,j∗ ∪ {e∗}
13: else
14: Si+1,j∗ ← Si,j∗

15: end if
16: for k ∈ Jm− 1K, k ̸= j∗ do
17: Si+1,k ← Si,k

18: end for
19: end for
20: Output: Sl and wl

Proof. We define the distorted objective function Φi : m
JdK × Sn → R to be

Φi(S,wi) := αig(S,wi)− c(S,wi) > αif(S,wi)− c(S,wi),

where the inequality comes from the fact that 0 < αi ≤ 1.
We look into the difference of the distorted objective function

Φi+1(Si+1,wi+1)− Φi(Si,wi) = [Φi+1(Si+1,wi+1)− Φi(Si,wi+1)]− [Φi(Si,wi+1)− Φi(Si,wi)],

where the first term is the gain in the distorted greedy algorithm, and the second term is the weight
update error.

We first refer to the proof of Theorem 2.16 and state the lower bound of the gain in the distorted
greedy part

Φi+1(Si+1,wi+1)− Φi(Si,wi+1) ≥
1

l
(αi+1g(OPT(wi+1),wi+1)− c(OPT(wi+1),wi+1)).

We then analyze the weight update error term. From Theorem 11.2, we have

f(Si,w
∗(Si))− f(Si,wm) ≤

√
nB

K
, ∀m ∈ JlK.

hence the lower bound of the weight update error is

Φi(Si,wi+1)− Φi(Si,wi) = αi(f(Si,wi+1)− f(Si,wi))− (c(Si,wi+1)− c(Si,wi))

> −αi∥f(Si,wi+1)− f(Si,wi)∥ − C

≥ −αi(∥f(Si,w
∗(Si))− f(Si,wi+1)∥+ ∥f(Si,w

∗(Si))− f(Si,wi)∥)− C

≥ −2αi

√
nB

K
− C.

Since Φ0(S0) ≥ 0, then

f(Sl,wl) = αl · g(Sl,wi)− c(Sl,wi) ≥
l−1∑
i=0

[Φi+1(Si+1)− Φi(Si)],

48

hence

f(Sl,wl) ≥
l−1∑
i=0

[Φi+1(Si+1,wi+1)− Φi(Si,wi+1)] +

l−1∑
i=0

[Φi(Si,wi+1)− Φi(Si,wi)]

>
1

l

l∑
i=1

[αig(OPT(wi),wi)− c(OPT(wi),wi)]− 2

√
nB

K

l−1∑
i=0

αi − lC

=
1

l

l∑
i=1

[αig(OPT(wi),wi)− c(OPT(wi),wi)]−O

(
l

(√
nB

K
+ C

))
.

13 Numerical experiments of Part II2

We conduct a series of numerical experiments to validate the theoretical framework and evaluate the
performance of the proposed algorithms on the Curie-Weiss model and the Bernoulli-Laplace level model
(see Section 2.4 for details). The experiments are designed to demonstrate the performance of the
projected subgradient algorithm (Algorithm 5) to solve problem (54) and the two-layer subgradient-
greedy algorithm (Algorithm 6) to solve problem (56).

13.1 Numerical experiments of Algorithm 5

We apply the projected subgradient algorithm (Algorithm 5) to solve the minimization problem (54)
for both the Curie-Weiss and Bernoulli-Laplace level models. We start with a low-dimensional example.
For both settings, we construct a 5-dimensional Markov chain with π-stationary transition probability
matrix P on state space X = {0, 1}5. We then construct a family of n = 5 transition matrices with
B = {P, P 2, P 4, P 8, P 16}, which ensures that all matrices in B share the same stationary distribution
π. We partition the state space into S = {S1, S2, S3} (m = 3) such that S1 = {1, 2}, S2 = {3, 5}, and
S3 = {4}.

We initialize the algorithm with uniform weights w(0) = (1/5, . . . , 1/5). The step size is chosen
according to the theoretical guarantee from Theorem 11.2, η =

√
n
Bt , where the subgradient norm bound

B is estimated once at the beginning of the algorithm. The number of iterations until convergence is
theoretically determined by t = ⌈nBϵ2 ⌉, but t would be large with large B and small ϵ. Therefore for
practical purpose, we only run a small number of iterations for demonstration. The trajectory plots of
the projected subgradient algorithm and the evolution of weights of both models are shown in Figure 11.
We also summarize the weights w ∈ Sn and the corresponding objective value h(w) in Table 20 for both
Curie-Weiss and Bernoulli-Laplace models. We state and compare the optimal w during the optimization
process argmini∈JtK h(w

(i)), the averaged value during the iterations wt, initial uniform w(0), extreme

weight wex such that only wex,0 = 1, and the final weight w(t) of the iterations.

2The code is available at: https://github.com/zheyuanlai/subgradient-greedy.

49

https://github.com/zheyuanlai/subgradient-greedy/

0 50 100 150 200 250 300
Iteration

0.65

0.60

0.55

0.50

0.45

h(
w

)
Curie-Weiss Model: Trajectory Plot of h(w)

0 50 100 150 200 250 300
Iteration

0.0

0.2

0.4

0.6

W
ei

gh
t

Weights Evolution

w1
w2
w3
w4
w5

(a) Curie-Weiss model

0 25 50 75 100 125 150 175 200
Iteration

0.55

0.50

0.45

0.40

0.35

h(
w

)

Bernoulli-Laplace Level Model: Trajectory Plot of h(w)

0 25 50 75 100 125 150 175 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

Weights Evolution

w1
w2
w3
w4
w5

(b) Bernoulli-Laplace level model

Figure 11: Convergence of the projected subgradient algorithm for both models (d = 5).

w, h(w) / Model Curie-Weiss Bernoulli-Laplace

argmini∈JtK h(w
(i)) (0.71, 0.00, 0.00, 0.08, 0.21) (1.00, 0.00, 0.00, 0.00, 0.00)

wt (0.60, 0.08, 0.02, 0.11, 0.19) (0.85, 0.11, 0.02, 0.01, 0.01)

w(0) (0.20, 0.20, 0.20, 0.20, 0.20) (0.20, 0.20, 0.20, 0.20, 0.20)
wex (1.00, 0.00, 0.00, 0.00, 0.00) (1.00, 0.00, 0.00, 0.00, 0.00)

w(t) (0.71, 0.00, 0.00, 0.08, 0.21) (1.00, 0.00, 0.00, 0.00, 0.00)

mini∈JtK h(w
(i)) −0.65 −0.55

h(wt) −0.62 −0.51

h(w(0)) −0.39 −0.31
h(wex) −0.48 −0.55

h(w(t)) −0.65 −0.55

Table 20: Comparison of h(w) values for different weight choices (d = 5)

For the Curie-Weiss model (Figure 11a), the algorithm demonstrates rapid initial decrease, after
the first 50 iterations, the objective value decreases with a slower rate, which totally converges after 250
iterations. The weights converge to a sparse distribution, with the final weight vector being approximately
w(t) = (0.71, 0.00, 0.00, 0.08, 0.21). This indicates that the final solution is approximately a convex
combination of the base transition matrix P and the transition matrix with the highest mixing rate P 16,
while the intermediate transition matrices have zero weights.

The Bernoulli-Laplace level model (Figure 11b) exhibits similar convergence behavior: the objective
value decreases fast in the first 30 steps, then it moves slowly until fully converged after 150 iterations.
The final weight vector converges to w(t) = (1.00, 0.00, 0.00, 0.00, 0.00), indicating that the optimal
solution is entirely the base transition matrix P .

We then conduct experiments associated with the family of transition matrices including lazy Markov
chain (see e.g. (Shen et al., 2014) for background). Precisely, we choose

B =

{
P, P 2, P 4,

1

4
I +

3

4
P,

1

2
(I + P),

3

4
I +

1

4
P

}
,

where one readily verifies that all the transition matrices in family B share the same stationary distri-
bution π. The trajectory plots are shown in Figure 12, and we also summarize the objective values of
different w’s in Table 21.

50

0 200 400 600 800 1000
Iteration

0.32

0.30

0.28

0.26

0.24

h(
w

)
Curie-Weiss Model (d=5): Trajectory Plot of h(w)

0 200 400 600 800 1000
Iteration

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t

Weights Evolution

w1
w2
w3
w4
w5
w6

(a) Curie-Weiss model

0 200 400 600 800 1000
Iteration

0.850

0.825

0.800

0.775

0.750

0.725

h(
w

)

Bernoulli-Laplace Level Model (d=5): Trajectory Plot of h(w)

0 200 400 600 800 1000
Iteration

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t

Weights Evolution

w1
w2
w3
w4
w5
w6

(b) Bernoulli-Laplace level model

Figure 12: Trajectory plot of the projected subgradient algorithm for both models (incl. lazy chains).

w, h(w) / Model Curie-Weiss Bernoulli-Laplace

argmini∈JtK h(w
(i)) (0.35, 0.00, 0.22, 0.00, 0.00, 0.44) (0.33, 0.10, 0.00, 0.03, 0.09, 0.45)

wt (0.32, 0.03, 0.20, 0.02, 0.04, 0.40) (0.26, 0.11, 0.03, 0.08, 0.13, 0.39)

w(0) (0.17, 0.17, 0.17, 0.17, 0.17, 0.17) (0.17, 0.17, 0.17, 0.17, 0.17, 0.17)
wex (1.00, 0.00, 0.00, 0.00, 0.00, 0.00) (1.00, 0.00, 0.00, 0.00, 0.00, 0.00)

w(t) (0.35, 0.00, 0.20, 0.00, 0.00, 0.45) (0.33, 0.10, 0.00, 0.03, 0.09, 0.45)

mini∈JtK h(w
(i)) −0.32 −0.87

h(wt) −0.34 −0.31

h(w(0)) −0.28 −0.29
h(wex) −0.29 −0.55

h(w(t)) −0.31 −0.87

Table 21: Comparison of h(w) values for different weight choices (incl. lazy chains)

For the Curie-Weiss model (Figure 12a), the algorithm exhibits an initial decrease followed by a slight
increase towards convergence. Since the projected subgradient algorithm (Algorithm 5) is not a descent
algorithm, then it is not guaranteed that h shows a non-decreasing trajectory. The final objective value
reaches approximately −0.311, while the final weight learned by the algorithm is

w(t) =
(
0.35︸︷︷︸
P

, 0.00︸︷︷︸
P 2

, 0.20︸︷︷︸
P 4

, 0.00︸︷︷︸
1
4 I+

3
4P

, 0.00︸︷︷︸
1
2 (I+P)

, 0.45︸︷︷︸
3
4 I+

1
4P

)
,

which is sparse and concentrates on three extremes: the base chain P , the most accelerated P 4, and
the “laziest” member 3

4I + 1
4P . Intermediate options (P 2 and the moderately lazy mixtures) receive

zero weight. This indicates that, within this family on the Curie-Weiss chain, the best trade-off for the
minimax optimization is achieved by combining the slowest 3

4I +
1
4P and fastest P 4 directions with the

base chain P .
For the Bernoulli–Laplace level model (Figure 12b), we similarly observe rapid early descent and a

stable plateau thereafter as in Figure 11b. The final objective is approximately −0.866 though has not
reached convergence given the limited computational budget. The final weight is

w(t) =
(
0.33︸︷︷︸
P

, 0.10︸︷︷︸
P 2

, 0.00︸︷︷︸
P 4

, 0.03︸︷︷︸
1
4 I+

3
4P

, 0.09︸︷︷︸
1
2 (I+P)

, 0.45︸︷︷︸
3
4 I+

1
4P

)
,

51

which gives majority of weight on the base transition matrix P and the transition matrix associated with
the most “lazy” chain 3

4I +
1
4P . This indicates that, within this family on the Bernoulli-Laplace chains,

the best trade-off for the minimax optimization is achieved by combining the slowest direction 3
4I +

1
4P

and P 2 direction with the base chain P .
We proceed to simulate on higher-dimensional Markov chains associated with both models, with re-

sults presented in Figure 13. For these experiments, the family of transition matrices is B = {P, P 2, P 4, P 8, P 16}
(n = 5). For the Bernoulli-Laplace level model, we conduct experiments on d = 10, while for the Curie-
Weiss model, we only choose d = 8 in order to avoid numerical overflow. We also summarize the objective
values of different w’s in Table 22.

0 100 200 300 400 500 600
Iteration

0.7

0.6

0.5

h(
w

)

Curie-Weiss Model (d=8): Trajectory Plot of h(w)

0 100 200 300 400 500 600
Iteration

0.0

0.2

0.4

0.6

W
ei

gh
t

Weights Evolution

w1
w2
w3
w4
w5

(a) Curie-Weiss model (d = 8)

0 100 200 300 400 500 600
Iteration

0.7

0.6

0.5

0.4

h(
w

)

Bernoulli-Laplace Level Model (d=10): Trajectory Plot of h(w)

0 100 200 300 400 500 600
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

Weights Evolution

w1
w2
w3
w4
w5

(b) Bernoulli-Laplace level model (d = 10)

Figure 13: Trajectory plots of the projected subgradient algorithm for both models (higher dimension).

w, h(w) / Model Curie-Weiss Bernoulli-Laplace

argmini∈JtK h(w
(i)) (0.64, 0.04, 0.00, 0.00, 0.32) (1.00, 0.00, 0.00, 0.00, 0.00)

wt (0.55, 0.13, 0.01, 0.04, 0.27) (0.83, 0.14, 0.02, 0.01, 0.01)

w(0) (0.20, 0.20, 0.20, 0.20, 0.20) (0.20, 0.20, 0.20, 0.20, 0.20)
wex (1.00, 0.00, 0.00, 0.00, 0.00) (1.00, 0.00, 0.00, 0.00, 0.00)

w(t) (0.64, 0.04, 0.00, 0.00, 0.32) (1.00, 0.00, 0.00, 0.00, 0.00)

mini∈JtK h(w
(i)) −0.76 −0.73

h(wt) −0.69 −0.67

h(w(0)) −0.44 −0.38
h(wex) −0.27 −0.73

h(w(t)) −0.76 −0.73

Table 22: Comparison of h(w) values for different weight choices (higher dimension)

The experiments associated with the Bernoulli-Laplace level model (Figure 13b) exhibit similar trends
as the 5-dimensional example (Figure 11b), as the objective value h(w) decreases fast at start and
then converges slower towards w(t) = (1.00, 0.00, 0.00, 0.00, 0.00). For the Curie-Weiss model, the 8-
dimensional example (Figure 13a) shows similar convergence trend as the 5-dimensional example (Fig-
ure 11a). However, as the B in Theorem 11.2 is large, we do not obtain the exact converging w∗ with
the same computational budget as the Bernoulli-Laplace model.

52

13.2 Numerical experiments of Algorithm 6

We apply Algorithm 6 to solve the maximization problem (56) on both the Curie-Weiss and Bernoulli-
Laplace models. For both models, we construct a 5-dimensional Markov chain with state space X =
{0, 1}5 and π-stationary transition matrix P . We then construct B = {P, P 2, P 4, P 8, P 16} so that all
matrices in B share the same stationary distribution π. We choose the ground set to be V = {V1, V2}
such that V1 = {1, 2} and V2 = {3, 5}. For the inner part, we execute K = 30 iterations of the projected
subgradient algorithm. We summarize the running results of both models in Figure 14.

1 2 3 4
Outer iteration i

0.54

0.56

0.58

0.60

0.62

0.64

0.66

f(S
i,w

i)

Outer objective f over iterations

0 4 8 12 16 20 24 28
Inner step k

0.40

0.45

0.50

0.55

0.60

0.65

f(S
i,w

(k
))

Inner PSG f trajectories

i=1
i=2
i=3
i=4

(a) Curie-Weiss model

1 2 3 4
Outer iteration i

0.25

0.30

0.35

0.40

0.45

0.50

0.55

f(S
i,w

i)

Outer objective f over iterations

0 4 8 12 16 20 24 28
Inner step k

0.1

0.2

0.3

0.4

0.5

f(S
i,w

(k
))

Inner PSG f trajectories

i=1
i=2
i=3
i=4

(b) Bernoulli-Laplace level model

Figure 14: Trajectory plot of Algorithm 6 for both models (d = 5).

For the Curie-Weiss model (Figure 14a), the final weight is wl = (0.72, 0.00, 0.00, 0.00, 0.28), and the
final partition set is Sl = {S1, S2}, where S1 = {2} and S2 = {3, 5}. It shows that after the final round
of Algorithm 6, the resultant weight vector of the max-min-max optimization problem is attained by
combining the base transition matrix P and the transition matrix with the highest mixing rate P 16.

For the Bernoulli-Laplace level model (Figure 14b), the final weight iswl = (0.97, 0.03, 0.00, 0.00, 0.00),
and the final partition set is Sl = {S1, S2}, where S1 = {2} and S2 = {3, 5}. It shows that after the final
round of Algorithm 6, the convex hull of family B concentrates on the base transition matrix P .

Similar to the numerical experiments in Section 13.1, we then look into the experiments associated
with the family of transition matrices including lazy random walk, precisely, we choose

B =

{
P, P 2, P 4,

1

4
I +

3

4
P,

1

2
(I + P),

3

4
I +

1

4
P

}
.

We summarize the results in Figure 15.

53

1 2 3 4
Outer iteration i

0.54

0.55

0.56

0.57

0.58
f(S

i,w
i)

Outer objective f over iterations

0 4 8 12 16 20 24 28
Inner step k

0.46

0.48

0.50

0.52

0.54

0.56

0.58

f(S
i,w

(k
))

Inner PSG f trajectories

i=1
i=2
i=3
i=4

(a) Curie-Weiss model

1 2 3 4
Outer iteration i

0.60

0.65

0.70

0.75

0.80

0.85

0.90

f(S
i,w

i)

Outer objective f over iterations

0 4 8 12 16 20 24 28
Inner step k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f(S
i,w

(k
))

Inner PSG f trajectories

i=1
i=2
i=3
i=4

(b) Bernoulli-Laplace level model

Figure 15: Trajectory plot of Algorithm 6 for both models (incl. lazy matrices).

For the Curie-Weiss model (Figure 15a), the final weight is

wl =
(
0.37︸︷︷︸
P

, 0.00︸︷︷︸
P 2

, 0.33︸︷︷︸
P 4

, 0.00︸︷︷︸
1
4 I+

3
4P

, 0.00︸︷︷︸
1
2 (I+P)

, 0.30︸︷︷︸
3
4 I+

1
4P

)
,

and the final partition set is Sl = {S1, S2}, where S1 = {2} and S2 = {3, 5}. The final weight vector wl

concentrates on three modes, which indicates that the final weight is obtained by combining the slowest
3
4I +

1
4P and the fastest P 4 directions with the base chain P .

For the Bernoulli-Laplace level model (Figure 15b), the final weight is

wl =
(
0.50︸︷︷︸
P

, 0.00︸︷︷︸
P 2

, 0.00︸︷︷︸
P 4

, 0.00︸︷︷︸
1
4 I+

3
4P

, 0.00︸︷︷︸
1
2 (I+P)

, 0.50︸︷︷︸
3
4 I+

1
4P

)
,

and the final partition set is Sl = V, which means that Algorithm 6 selects the whole ground set as
the subset. The final output wl concentrates on two matrices, which indicates that the final result is
obtained by averaging the chain with the slowest mixing rate 3

4I +
1
4P and the base chain P .

We proceed to analyze higher-dimensional cases of both models with d = 8 and cardinality constraint
l = 7, and choose the ground set as V = {V1, V2}, where V1 = {1, 2, 3, 4} and V2 = {5, 6, 7}. We choose
the family of the transition probability matrices to be B = {P, P 2, P 4, P 8, P 16}. For the inner part, we
execute K = 150 iterations of the projected subgradient algorithm. The trajectory plots of both models
are summarized in Figure 16.

54

1 2 3 4 5 6 7
Outer iteration i

0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175
f(S

i,w
i)

Outer objective f over iterations

0 20 40 60 80 100 120 140
Inner step k

0.7

0.8

0.9

1.0

1.1

1.2

f(S
i,w

(k
))

Inner PSG f trajectories

i=1
i=2
i=3
i=4
i=5
i=6
i=7

(a) Curie-Weiss model

1 2 3 4 5 6 7
Outer iteration i

0.3

0.4

0.5

0.6

f(S
i,w

i)

Outer objective f over iterations

0 20 40 60 80 100 120 140
Inner step k

0.1

0.2

0.3

0.4

0.5

0.6

f(S
i,w

(k
))

Inner PSG f trajectories

i=1
i=2
i=3
i=4
i=5
i=6
i=7

(b) Bernoulli-Laplace level model

Figure 16: Trajectory plot of Algorithm 6 for both models (d = 8).

For the Curie-Weiss model (Figure 16a), the objective value f(Si,wi) is not monotonically non-
decreasing, as both the generalized distorted greedy algorithm (Algorithm 3) and the projected subgra-
dient algorithm (Algorithm 5) do not guarantee monotonicity. The final partition set is Sl = V, which
means that the algorithm selects the ground set as the subset. After the final round of Algorithm 6, the
final weight is wl = (0.70, 0.00, 0.00, 0.00, 0.30), which concentrates on the base transition matrix P and
the matrix with fastest mixing P 16.

For the Bernoulli-Laplace level model (Figure 16b), the final weight iswl = (1.00, 0.00, 0.00, 0.00, 0.00)
and the final partition set is Sl = {S1, S2}, where S1 = {1, 2, 3} and S2 = {5, 6, 7}. It shows that after
the final round of Algorithm 6, the weight of the max-min-max optimization reaches closely to the base
transition matrix P .

55

Acknowledgements

Zheyuan Lai acknowledges Professor Michael Choi, for his invaluable guidance and support throughout
this project.

References

A. Beck. First-Order Methods in Optimization. SIAM, Philadelphia, PA, 2017.

I. Bogunovic, S. Mitrović, J. Scarlett, and V. Cevher. Robust submodular maximization: A non-uniform
partitioning approach. In D. Precup and Y. W. Teh, editors, Proc. Int. Conf. Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 508–516, Sydney, Australia, 2017.
PMLR.

A. Bovier and F. Den Hollander. Metastability: a potential-theoretic approach, volume 351. Springer,
2016.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, 2004.

M. C. H. Choi and G. Wolfer. Markov chain entropy games and the geometry of their Nash equilibria.
ALEA Lat. Am. J. Probab. Math. Stat., 22(2):925–, 2025.

M. C. H. Choi, Y. Wang, and G. Wolfer. Geometry and factorization of multivariate Markov chains with
applications to MCMC acceleration. arXiv preprint arXiv:2404.12589, 2024.

L. Condat. Fast projection onto the simplex and the l1 ball. Math. Program., 158(1):575–585, 2016.

I. Csiszár. A class of measures of informativity of observation channels. Period. Math. Hung., 2(1–4):
191–213, 1972.

A. Ene and H. Nguyen. Streaming algorithm for monotone k-submodular maximization with cardinality
constraints. In International Conference on Machine Learning, pages 5944–5967. PMLR, 2022.

U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions. SIAM
Journal on Computing, 40(4):1133–1153, 2011.

B. C. Geiger and C. Temmel. Lumpings of Markov chains, entropy rate preservation, and higher-order
lumpability. Journal of Applied Probability, 51(4):1114–1132, 2014.

A. A. Gushchin and D. A. Zhdanov. A minimax result for f -divergences. In Y. Kabanov, R. Liptser, and
J. Stoyanov, editors, From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift,
pages 287–294. Springer, Berlin, Heidelberg, 2006.

H. Hafez-Kolahi, B. Moniri, and S. Kasaei. Information-theoretic analysis of minimax excess risk. IEEE
Trans. Inf. Theory, 69:4659–4674, 2022.

C. Harshaw, M. Feldman, J. Ward, and A. Karbasi. Submodular maximization beyond non-negativity:
Guarantees, fast algorithms, and applications. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 2634–2643. PMLR,
09–15 Jun 2019.

D. Haussler. A general minimax result for relative entropy. IEEE Trans. Inf. Theory, 43(4):1276–1280,
1997.

J. Jagalur-Mohan and Y. Marzouk. Batch greedy maximization of non-submodular functions: Guarantees
and applications to experimental design. Journal of Machine Learning Research, 22(252):1–62, 2021.

K. Khare and H. Zhou. Rates of convergence of some multivariate Markov chains with polynomial
eigenfunctions. Ann. Appl. Probab., 19(2):737–777, 2009.

B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, Berlin, 4th
edition, 2008.

D. Lacker. Independent projections of diffusions: Gradient flows for variational inference and optimal
mean field approximations. Ann. Inst. Henri Poincaré, Probab. Stat., 2025. to appear.

56

J. Lee, M. Sviridenko, and J. Vondrák. Submodular maximization over multiple matroids via generalized
exchange properties. Mathematics of Operations Research, 35(4):795–806, 2010.

D. A. Levin and Y. Peres. Markov chains and mixing times, volume 107. American Mathematical Soc.,
2017.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions—I. Math. Program., 14(1):265–294, 1978.

J. B. Orlin, A. S. Schulz, and R. Udwani. Robust monotone submodular function maximization. Math.
Program., 172(1):505–537, 2018.

M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, Cambridge, MA, 1994.

Y. Polyanskiy and Y. Wu. Information Theory: From Coding to Learning. Cambridge University Press,
Cambridge, 2025.

J. Shen, Y. Du, W. Wang, and X. Li. Lazy random walks for superpixel segmentation. IEEE Trans.
Image Process., 23(4):1451–1462, 2014.

M. Staib and S. Jegelka. Robust budget allocation via continuous submodular functions. Appl. Math.
Optim., pages 1–31, 2019.

J. Ward and S. Živnỳ. Maximizing k-submodular functions and beyond. ACM Trans. Algorithms, 12
(4):1–26, 2016.

57

	Introduction
	Preliminaries
	Some information-theoretic properties of multivariate Markov chains
	Background and examples of submodular functions
	Some submodular optimization algorithms
	Examples of multivariate Markov chains
	Curie-Weiss model
	Bernoulli-Laplace level model

	I Subset selection for a single multivariate Markov chain
	Submodular maximization of the entropy rate H(P(S))
	k-submodular maximization of the entropy rate of the tensorized keep-Si-in matrices H(i=1k P(Si))

	Submodular optimization of distance to factorizability D(P P(S) P(-S))
	Submodular minimization of the distance to factorizability
	Submodular maximization of the distance to factorizability
	k-submodular maximization of distance to factorizability of the tensorized keep-Si-in matrices D(P P(S1) …P(Sk) P(-i=1k Si))

	Supermodular minimization of distance to independence I (P(S))
	Supermodular minimization of distance to independence of the complement set I (P(-S))
	k-supermodular minimization of distance to independence of the tensorized keep-Si-in matrices I(i=1k P(Si))
	k-supermodular minimization of distance to independence of the tensorized keep-ViSi-in matrices I(i=1k P(Vi Si))

	Supermodular minimization of distance to stationarity D(P(S) (S))
	Supermodular minimization of distance to stationarity of the complement set D(P(-S) (-S))
	k-supermodular minimization of distance to stationarity of tensorized keep-Si-in matrices D(i=1k P(Si) i=1k (Si))
	k-supermodular minimization of distance to stationarity of tensorized keep-ViSi-in matrices D(i=1k P(Vi Si) i=1k (Vi Si))

	Distance to factorizability over a fixed set D(P(W S) P(W) P(S))
	Numerical Experiments
	Experiment results of Section 3
	Experiment results of Section 4
	Experiment results of Section 5
	Experiment results of Section 6
	Experiment results of Section 7

	II Minimax factorization for a family of multivariate Markov chains
	The minimax optimization problem
	An information-theoretic game
	A projected subgradient algorithm
	A max-min-max submodular optimization problem and a two-layer subgradient-greedy algorithm
	Numerical Experiments
	Numerical experiments of Algorithm 5
	Numerical experiments of Algorithm 6

