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Abstract

We study multivariate Markov chains on product state spaces through an information-theoretic
lens. On the one hand, we study the problem of optimally projecting the transition matrix of a
finite ergodic multivariate Markov chain onto a lower-dimensional state space. Specifically, we seek
to construct a projected Markov chain that optimizes various information-theoretic criteria under
cardinality constraints. We formulate these tasks as best subset selection problems over multivariate
Markov chains and leverage the (k-)submodular (or (k-)supermodular) structure of the objective
functions to develop efficient greedy-based algorithms with theoretical guarantees. On the other
hand, we study the minimax factorization problem of multivariate Markov chains, where we seek to
find the optimal factorizable transition matrix that minimizes the maximum information-theoretic
distance to the transition matrices of the original family of Markov chains. We show that this
problem can be formulated as a convex optimization problem through strong duality and provide
provable algorithms. Finally, we present numerical experiments associated with Curie-Weiss and
Bernoulli-Laplace models to demonstrate the effectiveness of our proposed methods.
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1 Introduction

Motivation. Multivariate Markov chains on product spaces X = X x ... x X@ with d € N arise
naturally throughout stochastic modeling, Markov chain Monte Carlo (MCMC), and interacting particle
systems. In high dimensions when d is large, it is natural—both for analysis and for algorithm design—to
(i) propose a subset Markov chain which preserves the most information or is closest to equilibrium, and
(ii) approximate a complex transition matrix P by a simpler model that factorizes across groups of
coordinates. This paper develops an information-theoretic framework, associated structure theorems,
and algorithms for subset selection of a single Markov chain and minimax factorization of a family of
Markov chains.

Related works. We build on three lines of work: information projection for Markov chains, mini-
max information aggregation, and (robust) submodular optimization over partitions. |Choi et al.| (2024])
view factorization as minimizing the KL divergence between an original chain and the set of factor-
izable chains; Lacker| (2025)) introduces an independent projection for diffusion processes via relative
entropy minimization over product measures; and |Geiger and Temmel| (2014) study lumping of Markov
chains from combinatorial and information-theoretic perspectives. For minimax information aggregation,
Haussler| (1997)); |Gushchin and Zhdanov| (2006) analyze minimax optimization under KL and general f-
divergences for probability measures, while [Hafez-Kolahi et al.| (2022) cast minimax excess risk as a
zero-sum game between a learner and Nature. For submodular optimization over partitions, Nemhauser
et al.| (1978) and Ward and Zivny (2016) give greedy algorithms with guarantees for submodular and
k-submodular partition functions; |Orlin et al.| (2018) address robust submodular optimization via bilevel
formulations; Bogunovic et al.| (2017) propose algorithms for non-uniform partitions; and |Staib and
Jegelkal (2019)) leverage continuous submodularity for robust budget allocation.

Structure. The remainder of the paper is organized as follows. Section [2]fixes notation and introduces
background knowledge: Section [2.1] summarizes key information-theoretic results in Markov chain the-
ory; Section [2.2| reviews submodularity and k-submodularity and discusses submodular functions arising
in the information-theoretic study of multivariate Markov chains; Section [2.3] covers submodular op-
timization algorithms with guarantees; and Section [2.4] gives examples of multivariate Markov chains
on product state spaces. We then divide the discussion into two parts. Part [I] studies optimization
problems concerning entropy rate (Section 7 distance to factorizability (Section , distance to inde-
pendence (Section , distance to stationarity (Section @, and distance to factorizability over a fixed set
(Section , with numerical illustrations in Section |8} Part |lI| reformulates minimax factorization as a
concave maximization problem via strong duality (Section E[) and interprets it as a two-player zero-sum
game (Section ; we then present a projected subgradient method (Section and a subgradient—
greedy algorithm (Section to solve the minimax and max—min—max problems, followed by numerical
experiments in Section [I3]

2 Preliminaries

2.1 Some information-theoretic properties of multivariate Markov chains

Throughout this paper, we consider a finite d-dimensional state space described by X = X x ... x x4,
We write [d] = {1,2,...,d}. For S C [d], we write X%) = x;c5X (). We denote by L(X) to be the set
of transition matrices on X, and P(X) = {m | mingcx w(x) > 0} to be the set of probability masses with
support on X. Let m € P(X) be any given probability distribution, and denote £(7) C L(X) as the set
of m-reversible transition matrices on X, where a transition matrix P € £L(X) is said to be m-reversible if
the detailed balance condition holds such that w(x)P(x,y) = n(y)P(y, x) for all ,y € X. Additionally,
we say that P € L(X) is w-stationary if it satisfies 7 = 7 P.

We now recall the definition of the tensor product of transition matrices and probability masses, see
e.g. BExercise 12.6 of (Levin and Peres, [2017). Define, for M; € L(X®), m € P(XW), 2!,y € XD for

(M; @ M;)((2',27), (y',y7)) == Mi(a',y" ) My (,f7),

(m; @ mj)(x", 27) := i (a" )y (a?).



A transition matrix P € £(X) is said to be in a product form if there exists M; € L(X®) for i € [d]
such that P = ®%_, M; can be expressed as a d-fold tensor product. A probability mass 7 is said to be
in a product form if there exists m; € P(X?) such that 7 = @ ;.

We then recall the definition of leave-S-out and keep-S-in transition matrices of a given transition
matrix P, see Section 2.2 of (Choi et al., |2024). Let 7 € P(X), P € L(X), and S C [d]. For any

(=9 y=9) € x(=9) x x(=9) we define the leave-S-out transition matrix to be P with entries
given by

_ Z(x(s),y(s))eX(S)xX(S) 7T(.271, s ’md)P(($17 s axd)> <y1> ARR) yd))

meexm m(xt, ... w’fd)

PEI(9),y-9)

The keep-S-in transition matrix of P with respect to 7 is
P = plNS) ¢ £(x(9)),
In the special case of S = {i} for i € [d]], we write
Pl = p—ih, pl) = pUih,

When P is m-stationary, we omit the subscript 7 and write directly P(—5) P(5). We also apply the
convention of P = p(=l4D) = 1,

We proceed to recall the Shannon entropy of a probability distribution and the entropy rate of the
transition matrix, see Section 1 of (Polyanskiy and Wu, [2025). For = € P(X), its Shannon entropy is

defined as
H(m):=— Z m(x) Inm(x),
reX

where the standard convention of 01n0 := 0 applies. For m-stationary P € L(X), the entropy rate of

P is defined as
H(P) == Z Z W(x)P(ac,y) lnP(x,y),
rzeX yeXx

where the standard convention of 0ln0 := 0 applies.

We shall also recall the definition of KL divergence between Markov chains (Definition 2.1 of (Choi
et al.,2024)) and the distance to independence (Definition 2.2 of (Choi et al.,|2024))). For given m € P(X)
and transition matrices M, L € L(X), we define the KL divergence from L to M with respect to 7 as

DELMIL) = 3 7)) S Mz, ) n (M(‘”‘”y)) ,

zEX yeEX L(x, y)

where the convention of Oln% := 0 applies for a € [0,1]. Note that 7 need not be the stationary
distribution of L or M. In particular, when M, L are assumed to be m-stationary, we write

D(M||L) := Dy, (M|| L),

which can be interpreted as the KL divergence rate from L to M. Given P € L(X), we define the
distance to independence of P with respect to Df, to be

I"(P) := ' DZ (Pl @, L;) = D, (P|| @%, PY).
(P) LieL(XIE}?,we[[d]] ko (Pl ®5—; L) ko (Pl ®i—; Py")

We write
I(P) =1"(P)

if P is m-stationary.
We recall the partition lemma for KL divergence of Markov chains (see Theorem 2.4 of (Choi et al.,
2024)).

Theorem 2.1 (Partition lemma). Let m € P(X), P,L € L(X) and suppose S C [d], we have:

T 71'(5)
DEL(P||L) > Diy, (P9 L),



We then define the averaging operation P(w) of a transition probability matrix P. We define S,
as the n-probability-simplex such that

i=1

Given a set of 7-stationary transition probability matrices B = {Py,...,P,}, we define the transition
probability matrix weighted by w = (w1, ...,w,) € S, as P(w) by

P = Plw Zwu

We see that P is also m-stationary because

TP=m (i wiP¢> = iwi(wPi) = iwm =T.
i=1 i=1 i=1

We project each P; onto S € 2[% and denote the weighted projection as

w) = i wiPi(S).
i=1

As a result, we have

(9) n
- (ZW ) = > wP¥ = P(S,w),
i=1

which means that the averaging operation commutes with the projection operation.
We then prove a Pythagorean identity related to the averaging operation and the KL divergence of
transition matrices.

Lemma 2.2. For givenw € S,,, m € P(X), P,,Q € L(X) for i € [n] where P; are all w-stationary, we
choose mutually disjoint sets Si, ..., Sy with U™, S; = [d], and the following identity holds:

i=1 i=1

o BINIE o P SEDY LN et ()1 (S
ZwiDKL<PiH ®jLy Q1)) = ZwiDKL(PiH ®jLy P7) + Z Dy (P1QW5)). (1)
=1
In particular, we have the following minimization result:

, u . - . m 55
min Y wDEL(PIQ) = ) wiDiy (P @, P,
Q; Q=07,Q"%) = i=1

Proof. Inspired by Theorem 2.22 of (Choi et al.| |2024)), we note that
ZwiDEL(PiH ®jy Q1))

i=1

:zn:wp” (P & P(Sj))Jriw.Zﬂ(x)P,(I y)lnw
£ YKL\ 1 7j=1 o zw i\Ly ®}71:1Q(Sj)(x’y)

) (595 P 5(55) S50y P (5, y5)
_ZwlDKLPlle@ LPON Y w T )R i)y ) o 2T )
j=1:i=1 (Sj))y(sj)

—(55) (59 —=(S;) .
_szDKL P ®iL, P +ZDK (P7)1Q5),

=1 j=1

where the last equality comes from the fact that the averaging and projection operation commutes. [



As a corollary, in the special case of m = 2 with S; =5, So = [d]\S, we see that

Corollary 2.3. For given w € S, m € P(X), P;,Q € L(X) for i € [n] where P, are all w-stationary,
S € 2l the following identity holds:

)

~ - e T o B N g ) e T
ZwiDKL(Pi”Q(S) ® Q) = ZwiDKL(PiHP ®P )+ Di, (PQW) + Dy, (P (IQ).

i=1 i=1

(2)
In particular, we have the following minimization result:
: - - 5(8) _ 5(=9)
min w; D%t (P = w; D%y (B||P @ P .
o ol g 2 U DRLRIQ) = 3 wi D (P )

2.2 Background and examples of submodular functions

We first recall the definition of a submodular function (Ward and Zivny, 2016). Given a finite nonempty
ground set U, a set function f : 2V — R defined on subsets of U is called submodular if for all S, 7 C U,

f)+ (1) =2 f(SNT) + f(SUT).

f is said to be supermodular if — f is submodular, and f is said to be modular if f is both submodular
and supermodular.
Next, we recall a result that states the complement of a submodular function is still submodular:

Lemma 2.4. If S — f(S) is submodular, then S — f(U\S) is submodular.
Proof. We choose S CT C U and e € U\T, then
(fONSU{e})) = FU\S)) = (FUNT U{e})) = F(UNT))
= (f(\T) = FUNT U{e})) = (FU\S) = FUN(S U{e}))) 2 0
since S — f(S) is submodular and U\T C U\S, and hence S — f(U\S) is submodular. O

We call a submodular function f : 2V — R symmetric if f(A) = f(U\A) for all A C U.

A multivariate generalization of submodularity is known as k-submodularity (Ene and Nguyen! 2022)
where &k € N. In particular, 1-submodular function is equivalent to submodular function. Let f :
(k+ 1)V — R be a set function. The function f is said to be k-submodular if

F(S)+ F(T) > f(STIT)+ f(SUT) VS, Te (k+1)",

where ST1T is the k-tuple whose i-th set is S; N T; and SUT is the k-tuple whose i-th set is (S; UT;) \
(Uj#(Sj U T])) A function f is said to be k-supermodular if —f is k-submodular.

For S = (S1,...,8), T = (T1,...,Tk) € (k+ 1)V, we write S < T if and only if S; C T Vi € [k]. A
function f is said to be monotonically non-decreasing (resp. non-increasing) if

£(S) < (resp. =) f(T) VS <T.
Let A ;f(S) be the marginal gain of adding e to the i-th set of S:
Aeyif(S) = f(Sl, e ,Si U {6}, - ,Sk) — f(Sl, e ,Si, ey Sk)

Note that f being monotonically non-decreasing is equivalent to A.;f(S) > 0 for all S € (k + 1)V,
i € [k], and e ¢ supp(S), where we define supp(S) := U¥_,S;. A function f is said to be pairwise
monotonically non-decreasing (resp. non-increasing) if

Acif(S) +Ac; f(S) = (resp. )0
for all S € (k+ 1)V, e ¢ supp(S), and 4,5 € [k] such that i # j. A function f is said to be orthant
submodular (resp. orthant supermodular) if
Acif(8) = (resp. <)Acif(T) 3)

for all i € [k] and S, T € (k + 1)V such that S < T, e ¢ supp(T). ]
The following result that we recall characterizes k-submodularity (Theorem 7 of (Ward and Zivny,
2016)).



Theorem 2.5 (Characterization of k-submodularity). A function f is k-submodular (resp. k-supermodular)
if and only if f is both orthant submodular (resp. supermodular) and pairwise monotonically non-
decreasing (resp. non-increasing).

The next two results relates the sum of individually supermodular or submodular functions to k-
supermodularity or k-submodularity respectively.

Lemma 2.6. Let F : (k+ 1)V — R defined to be
F(S)=F(S1,...,5) =Y Fi(S))

be the sum of k monotonically non-increasing and supermodular functions (F;)*_, with F; : 2V — R for
all i € [k]. Then F is k-supermodular.

Proof. Throughout this proof, let i # j € [k]. First, we seek to prove that F' is pairwise monotonically
non-increasing, in which case we aim to show A, ;F(S) + A, ; F(S) < 0 for e ¢ supp(S):

AciF(S) + Ac i F(8S) = (Fi(Si U{e}) — Fi(Si) + (F3(S; U{e}) — F;(S:)) <0,

given that Fj, F; are both monotonically non-increasing. Next, we seek to show that F' is orthant
supermodular, in which case we aim to show that A, ;F(S) < A.;F(T) for any S < T and e ¢ supp(T):

AciF'(S) — A i F(T) = (Fi(S; U{e}) — Fi(S:)) — (Fi(T; U {e}) — Fi(T3)) <0,

given that F; is supermodular. Therefore, F' is k-supermodular given that it is pairwise monotonically
non-increasing and orthant supermodular using Theorem [2.5 O

Corollary 2.7. Let G : (k+ 1)V — R defined to be
G(S) =G(Sy,...,Sk) := ZGi(Si)

be the sum of k monotonically non-decreasing and submodular functions (G;)f_, with G; : 2V — R for
all i € [k]. Then G is k-submodular.

Proof. By applying Lemma[2.6]to —G, we see that —G is k-supermodular, which is equivalent to G being
k-submodular. O

The next result, that we shall apply in subsequent sections, transforms a non-monotone submodular
f to a monotonically non-decreasing submodular g (Proposition 14.18 of (Korte and Vygen, [2008])).

Theorem 2.8 (Transform a non-monotone submodular f to a monotone submodular g). Let f : 2V — R
be a submodular function and B € R, then g : 2V — R defined by

9(8) = f(5) = B+ )_(F(U\{e}) - £(U))
eeS
is submodular and monotonically non-decreasing.

We aim to prove a generalized version of Theorem that transforms a given constrained orthant
submodular function into a k-submodular function. Suppose that we are given V € (k + 1)V. Then,
constrained to V, we can transform an orthant submodular function into a k-submodular function.

Theorem 2.9. Let f: (k+ 1)V — R be an orthant submodular function, 3 € R and V € (k+1)V. then
g: (k+1)Y XV = R with

k

9(S) = F(8) = B+ 35 (f(Vi o ViNleh oo Vi) = F (Vo Vi, TR))

i=1e€S;

18 k-submodular and monotonically non-decreasing.



Proof. Suppose that S < T, i € [k], and e € V;\T;. Since f is orthant submodular, we have A, ;f(S) >
A, f(T), and hence

Acig(S) = Acif (S) + f(Va, ..., ViNe}, ..., Vi) = f (Wi, Vi Vi)

k
> Acif(T)+ 8 Y Y (FVi - ViNub o Vi) = F(V -, Vi V)

J=1ueT;
- Ae,ig(T)'

This gives g is orthant submodular.
To prove the orthant monotonicity, we choose S € (k+1)Y, i € [k], and e € V;\S;. From the orthant
submodularity of f, since S; C V;\{e}, we have

Acig(S)=Acif(S) = (fVa,..., Vi, ., Vi) — f(Va, ..., ViN{e}, ..., V&) > 0.
Therefore g is monotonically non-decreasing, which implies that g is pairwise monotonically non-decreasing,
and hence g is k-submodular. O
We then show some examples of submodular structures that arise in the information theory of Markov

chains.

Theorem 2.10 (Submodularity of some information-theoretic functions in Markov chain theory). Let
weS,, SCId], P,P; € L(X) be w-stationary transition matrices for i € [n]. We have

1. (Submodularity of the entropy rate of P) The mapping S — H(P')) is submodular.

2. (Submodularity of the distance to (S, [d]\S)-factorizability of P) The mapping S + D, (P||P*S) @
P(=9)) is submodular.

3. (Supermodularity and monotonicity of the distance to independence) The mapping S — I(P®)) is
monotonically non-decreasing and supermodular.

4. (Submodularity of the entropy rate of P) The mapping S H(?(S)) is submodular.

5. (Submodularity of the weighted distance to (S, [d]\S)-factorizability of B) The mapping S
Dy wiDITQL(PiHﬁ(S) ® ﬁ(_s)) is submodular.
Proof. From Proposition 2.33 of (Choi et all [2024), item , item , and item hold. Since the
map S — H(P®)) is submodular, the map S H(ﬁ(s)) is submodular since P°) is the projection of
P onto subset S, which proves item . Since

S wiDg (B PP @ PV = (PP + BETD) = S wH(P),
=1

i=1
we can conclude that S — > | w; Dy, (PZ-HP(S) ® ?(_S)) is submodular because both the map S —

H(ﬁ(s)) and the map S — H(P(is)) are submodular (by Lemma . O

Next, we investigate the map S — ]I(P(_S)), and show that it is monotonically non-increasing and
supermodular.

Theorem 2.11 (Supermodularity and monotonicity of the distance to independence of P(_S)). The
mapping S +— 1(P(—5)) is monotonically non-increasing and supermodular.

Proof. We first prove the monotonicity. Suppose S C T C [d], then [d]\T C [d]\S, hence according to
the partition lemma (Theorem , we have:

1(PC9) = D(PCS| @icpaps PY) 2 D(PCD || @eapr PY) =1(PT),

therefore, S — H(P(*S)) is monotonically non-increasing.
We then look into the supermodularity of this map. Since

Py = " H(EPY)-HEPY),
1€[d]\S

then I(P(—%)) is supermodular because H(P(~%)) is submodular in view of Lemma and Lemma
O



2.3 Some submodular optimization algorithms

To maximize a monotonically non-decreasing submodular function, one can apply a heuristic greedy
algorithm (see Section 4 of (Nemhauser et al., [1978))) with (1 — e™!)-approximation guarantee. For non-
monotone submodular functions, we recall a local search algorithm (see Theorem 3.4 of (Feige et al.
2011)) in Algorithm [I| that comes along with an approximation guarantee.

Algorithm 1 Local Search Algorithm (Feige et al., [2011))

Require: Ground set U with |U| = d, submodular function f, positive € > 0
1: Initialize S < {e}, where f({e}) is the maximum over all singletons e € U
2: while Ja € U\S such that f(SU{a}) > (1+¢/d?)f(S) do
3 S+ SuU{a}

4: end while

5. if Ja € S such that f(S\{a}) > (1 +¢/d?)f(S) then
6 S < S\{a}

7 Go back to line 2

8: end if

9: Output: f(S) and f(U\S)

Theorem 2.12 (Approximation guarantee of Algorithm . Algom'thm s a (% — i)-appmximation
algorithm for maximizing non-negative submodular functions, and (% — §)-approzimation algorithm for

maximizing non-negative symmetric submodular functions. The time complexity of Algorithm is O (%d?’ log d).

In this paper, it turns out that some functions we are interested in optimizing can be written as a
difference of a submodular function and a modular function. In this section, we shall consider maximizing
the difference of a monotonically non-decreasing submodular g and a modular ¢ on the ground set U
with cardinality constraint being at most m € N. Precisely, we consider the problem

Sg}?%gmg(s) —c(5),

and

OPT = OPT(g,c,U,m) := argmax g(S) — c(S5).
SCU; |S|<m

Under this setting, a distorted greedy algorithm (Algorithm has been proposed along with a
theoretical lower bound (Harshaw et al., |2019)).

Algorithm 2 Distorted greedy algorithm for maximizing the difference between a mono-
tonically non-decreasing submodular function and a modular function

Require: monotonically non-decreasing submodular g with g(@) > 0, non-negative modular ¢, cardinal-
ity m, ground set U
1: Initialize Sy < 0
2: fori=0tom—1do

s e amgmax { (1= )™ (908U {ed) — g(0) ~ e(feD) |

if (1— )" (g(Si U {ei}) — 9(5:)) — e({ei}) > 0 then

4:

5: S7;+1 «~— S; U {67}
6: else

7 Si+1 +— S;

8: end if

9: end for

10: Qutput: S,,.

Theorem 2.13 (Lower bound for distorted greedy algorithm). Algorithm provides the following lower
bound:

9(Sm) = c(Sm) = (1 — 7 1)g(OPT) — ¢(OPT),
where Sy, is the final output set.



Let V € (k+ 1)V, and consider maximizing the difference of a monotonically non-decreasing k-
submodular g and a modular ¢ on the ground set U with cardinality constraint being at most m € N.
Precisely, we consider the problem

(S) —«(8), (4)

max g
S=XV; [supp(S)[<m
and

OPT = OPT(g,c,U,V,m) := argmax  ¢(S) — ¢(S).
S2V; [supp(S)|<m

We propose a generalized distorted greedy algorithm (Algorithm [3)) for solving , which is of inde-
pendent interest.

Algorithm 3 Generalized distorted greedy algorithm for maximizing the difference of k-
submodular function and a modular function

Require: k-submodular monotonically non-decreasing g with g()) > 0, non-negative modular ¢ with
¢() = 0, cardinality m, ground set U, V = (V,..., Vi) € (k+ 1)V.
1: Initialize Sg = (So,1,...,S0%) < 0
2: fori=0tom—1do ‘
3: (j*,€*) + argmax (1- %)mf(lﬂ) Acig(S:) — c({e})}
JElk],e€Vi\S: ;
if (1-2)" VAL .g(S:) — c({e}) > 0 then

4:

5: SiJrl’j* — Si’j* U {6*}
6: else

£ Sit1,57 4 S g

8: end if

9: for | # j* do

10: Si+1,l — S’L,l

11: end for

12: end for

13: Output: S,,, = (Si1,.--, Sm k)

The rest of this section is devoted to giving a lower bound for the generalized distorted greedy
algorithm. We assume that g is monotonically non-decreasing, k-submodular, g(#}) > 0, while ¢ is
non-negative, modular and ¢(f) = 0.

In order to prove the lower bound for the generalized distorted greedy algorithm, we first define the
distorted objective function ®; : (k + 1)V = R, for m € Nand 0 <i < m — 1, that

©;(S) := (1 —m™1)""g(S) — c(8).
We also denote ¥, : (k+ 1)V x [k] x U — R that
Ui(S, j,e) == max{0, (1 —m~ )" DA, ;9(S) — c({e})}.
Lemma 2.14. The difference of the distorted objective function of two iterations can be written as
1 1™+
Diy1(Sit1) — Pi(S) = Wi(Si,j7, ") + o (1 - m) 9(Si).

Proof. Similar to Lemma 1 of (Harshaw et al., [2019), we can show

i) sy = (1= 1) o e - (12 1) ots) ets)
- (1- ;)mm o(821) — efSivr) — (1 ;)m(im (1-£) ots) +et5)
(1 I i) a0 — i) et
+ (i ;)m_w 4(S)



If (1 —m YH)m=G+DAL. 1.g(S) — c({e*}) > 0, then e* is added to the solution set. In the algorithm we
have e* € Vi-\S; j=, 9(Sit1) — 9(Si) = Ae- j=9(Ss), c(Si+1) — c(S;) = c({e*}), hence

1 1 m—(i+1)
O, Y B(S) = WS, it e — (1 = .
(B~ 8i8) = WS+ 1 (1o ) (s

If (1—m= 1) DA 5. g(S) — c({e;}) <0, the algorithm does not add e* into the solution set, hence
Si+1 = S;. In this case, we also have

1 1 —(i41) 1 1\ ™Gt
Bi1(Sip1) — Bi(S;) =0+ — (1— — S;) = Wi(Si, 5 )+ — (1— — S,).
) - () =0+ L (1= L) sy = w5 (1) gls)

Summarizing these two cases, we see that

1 1 m—(i+1)
Pi11(Sir1) — Pi(Ss) = Vi(Sy, 5%, €") + - (1 - m) 9(Si).
O
Lemma 2.15. A lower bound for ¥; is
1 1 m—(i+1)
i(Si, ) > - (1 - ) (4(OPT) - 4(S,)) — c(OPT) ).
m m
Proof. For j € [k], let
Ui’j = (V}\SZ’]) n OPTj,
k
Ui = U Uijs
=1
Ui = (Ui,la Ui,27 R Ui,k?)7
and hence
Si_’j U Ui’j = Siyj U OPT] (5)

We then have

—(i+1)
1
m%¥;(S;, 5%, e*) =m max 0,{1—— A ig(S;) —c({e
CS jeﬂwvj\si,j{ (1-3) J(8) el })}

m

m—(i+1)
> |supp(OPT)| max {0, <1 - 1) Ac,jg(Si) — C({e})}

j€[k],e€Us;,; m

s { (- 1>m_“+l) Aeso(S:) c({e}>}

jE[k],e€U; ; m

k m—(i+1)
> Z Z ( (1 — ;) Acig(Si) — C({e})>

IV
=

where the last inequality follows from the fact that ¢ is non-negative. Then, the desired result follows if
we show that

k
Z Z Ac,jg(Si) > g(OPT) — g(S;).

j=1 GEUin

11



Since g is orthant submodular, by Lemma 1.1 of (Lee et al. 2010]), we have

> Acig(S) = g(Sias s Sijo1,8i; VUi, Sijias- - Sk) — g(Si),
ecU; ;

and hence it further suffices to prove

k
Zg(Sm, ey Si’jfl, Si’j U Ui’j, Si’j+1, ey Sk) 2 g(OPT) + (k — 1)9(81) (6)

j=1
Since g is k-submodular, then
9(X)+9(Y) 2 g(XUY)+g(XNY),

for any X, Y € (k+1)Y. We seek to apply this definition to update each of the k coordinates by adding
(Ui,j);?:l sequentially. For the first step, we have

9(Si1 VU1, 8i2,...,8ik) +9(Si1,Si2UUiz2,Sis, ..., Sik)
> g((Si1 UU; 1)\(U21 810 U Ui 2), (Si2 U Ui 2)\ (Ui Si U Ui, i3, - -5 Sik) + 9(Si)
=g(Si1 VU1, Si2UUiz2,Si3, ..., Sik) + 9(Si),

where the last equality uses the fact that with n € [k],
(Si,n U Ui,n) = (Si,n U Ui,n)\(uﬁén(si,l U Ui,l))~
In the n-th step with n € [k], we thus have

9(Si1UUix, . SinUUin, o3 Sik) +9(Sits- s Sins Sims1 UUi g, -, Sik)
>g(Sii VUi, ..y Sint1 UUins1, -, Sik) +9(S:).
Repeating the above analysis leads to

k
> 9(Sins o Sijo1, 81 U Ui, Sigians -, Sk) > g(S; UUL) + (k — 1)g(S).

j=1

Finally, using the assumption that g is monotonically non-decreasing and OPT =< S; U U; in view of

, we have
Zg(si,la oy 851,91, U Ui 5,8 541, -+ Sk) = g(OPT) + (k — 1)g(Ss),

and hence @ holds. O
Finally, we prove a lower bound for the generalized distorted greedy algorithm:

Theorem 2.16 (Lower bound for generalized distorted greedy algorithm). Algorithm @ provides the
following lower bound:
9(Sm) = ¢(Sp) > (1 — e )g(OPT) — ¢(OPT),

where Sy, = (Sm1,-- -5 Sm.k) is the final output set.

Proof. According to our assumptions, we have

Bo(S0) = (1- 1) al0)—ct0) 2 0
and 0
BaS) = (1 1) 0(5,) — eS1) = 9(S.,) ~ (5.

12



Therefore, we have
9(Sm) — c(Sm) = Pm(Sim) — Po(So) = Qi r1(Sit1) — 9i(Si). (7)
We apply Lemma and to yield
1 1 m—(i+1)
Diy1(Sit1) — Pi(Si) = Vi(Sy, 5%, ") + o (1 - ) 9(Si)

1 1 m—(i+1) 1
> — (1 - > g(OPT) — —¢(OPT).
m m

m—1 m—(i+1)
(S m) ~ clupp(Sm)) 2 [; (1 - 1) o(0PT) - L (0PT)

v

1 —e Hg(OPT) — ¢(OPT).

2.4 Examples of multivariate Markov chains
2.4.1 Curie-Weiss model

We aim to generate a d-dimensional Markov chain from the Curie-Weiss model. We consider a discrete
d-dimensional hypercube state space given by

X ={-1,+1}%

Let the Hamiltonian function be that of the Curie-Weiss model (see Chapter 13 of (Bovier and Den Hol-
lander, 2016)) on X with interaction coefficients and external magnetic field h = 1, that is, for
r=(2',... 29 € X,

_1
213 —il

d o d d_
H(z) = fzz Wﬂx] — thz.
i=1

i=1 j=1

We consider a Glauber dynamics with a simple random walk proposal targeting the Gibbs distribution
at temperature 7' = 10. At each step we pick uniformly at random one of the d coordinates and flip it
to the opposite sign, along with an acceptance-rejection filter, that is,

ée—%ww—wn, ity = (21,22, —ai,... 2,0 [d],
P(xa y) = 1— Zy . P(x,y), if r = Y,
0, otherwise,

where for m € R we denote m4 := max{m, 0} as the non-negative part of m. The stationary distribution
of P is the Gibbs distribution at temperature T' given by

e_%H(x)

= 4ZZ€X 6_%7{(2) .

()
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2.4.2 Bernoulli-Laplace level model

We aim to generate a d-dimensional Markov chain from the Bernoulli-Laplace level model. We consider a
(d+1)-dimensional Bernoulli-Laplace level model as described in Section 4.2 of (Khare and Zhoul 2009).
Let

X:{Z‘:(I17...,$d+1)eNg+1; $1+...+$d+1:N}

be the state space, where 2° can be interpreted as the number of “particles” of type i out of the total
number N = d. The stationary distribution of such Markov chain, 7, is given by the multivariate
hypergeometric distribution described in Lemma 4.18 of (Khare and Zhou, [2009). Concretely, we have

1) (4)

m(z) = (P ey z €L,
N
for some fixed parametersl; = ... =1[l; = 1 and l441 = d, which represents the total number of “particles”
of type 4. Under this setting, we let z4+1 = N — Z?:l z*, and hence the state space is of product form

with X = {0, 1}4.
Following the spectral decomposition for reversible Markov chains (see Section 2.1 of (Khare and
Zhoul, 2009) for background), the transition matrix P is written as:

N
P(z,y) = Z Brnbn ()0 (y)(y),
n=0

where (3, are the eigenvalues and ¢, (z) is the eigenfunction.
From Definition 4.15 of (Khare and Zhou, 2009), in the Bernoulli-Laplace level model, s is the swap

size parameter satisfying
d+1
0<s<min{N,Zli—N},

i=1

where we consider Zf:ll l; > N. From Theorem 4.19 of (Khare and Zhou, [2009), the eigenvalues for the
Bernoulli-Laplace level model are given by

N (n (N = 8)m—r15[H)
5n—2(k)N remn w UL E S
k=0 [n—k] (Zizl i — ){k]

where apy) = a(a —1)---(a — k + 1), and we apply the convention that ap; = 1.
In this case, we choose the eigenfunction as

d+1
i=1 In|=n

where Q, are the multivariate Hahn polynomials for the hypergeometric distribution as defined in
Proposition 2.3 of (Khare and Zhou, [2009).

14



Part 1
Subset selection for a single multivariate
Markov chain

3 Submodular maximization of the entropy rate H(P))

Given P € L(X) and m € N, we aim to investigate the following submodular maximization problem
with cardinality constraint:

(S)
scidl; 1s1<m H(P). ®)

From Theorem the map S — H(P') is submodular but generally not monotonically non-
decreasing. Since the widely-used heuristic greedy algorithm is near-optimal only when the objective
submodular function is monotonically non-decreasing (see Section 4 of (Nemhauser et al., |1978)), in this
regard our problem does not have a classical greedy-based approximation guarantee. On the other hand,
since H(P¥)) > 0 and H(P®) = 0, if we consider the unconstrained maximization problem of (§), we
can apply Algorithm |1f with (% — 5)—approximation guarantee (see Theorem .

Instead, we consider

H(P) = H(x ¥ P) — H(r),
where we define the edge measure of P with respect to m as (7 X P)(z,y) := n(x)P(z,y) and n X P €
P(X x X).
Then, the map
S+ H(PW) = H(x® & PY)) - H(x) (9)

can be considered as a monotonically non-decreasing submodular function H(7®) & P(5)) minus a non-
negative modular function H (’/T(S)) if we assume 7 to be of product form. This fits into the setting of
the distorted greedy as in Algorithm [2] and leads us to Corollary

Corollary 3.1. Let P € L(X) be m-stationary where 7 is of product form. In Algorithm @ we take
g(8) = H(r® ® PO, ¢(S) = H(n'S)), and OPT = arg MaXgc[q]; |S|<m H(PY)). Therefore, Theorem
[213 gives

H(P(Sm)) > (1 _ 6_1)H(’/T(OPT) X P(OPT)) _ H(?T(OPT)),
where Sy, is the output of Algorithm[3

More generally for P with non-product-form 7 as stationary distribution, in view of Theorem [2.8] for
any 3 € R we have a monotonically non-decreasing submodular g given by

9(8) = H(P®) — g+ (H(P") — H(P)), (10)

eeS

and we also denote the following modular function

=8+ _(D(P|P @ P"9) — H(PY)). (11)

As H(P(©)) <log|X(®)|, ¢ is ensured to be non-negative if 3 < — Zgzl log | X®|. Since
H(P®)) = g(S) - e(9),

we can employ Algorithm [2] to perform distorted greedy maximization with a lower bound.

15



Corollary 3.2. Let P € L(X) be w-stationary. In Algorithm @ we take g as in (10), ¢ as in ,
g<— Z;j:l log|X*@|, and OPT = arg MaxXgc[q]; |S|<m H(P). Therefore, Theorem gives
H(PS™) > (1 - e~1)g(OPT) — ¢(OPT),
where Sy, is the output of Algorithm [
Note that the lower bound of Corollary (3.2)) depends on 5 through g and c. If 3 is chosen to be too

small, then the lower bound might be too loose as the right hand side might be negative.

3.1 k-submodular maximization of the entropy rate of the tensorized keep-
Si-in matrices H(®F_, P(5))

In this subsection, we investigate the the following map

k

(k+ DI 58 =(S1,.... ) = f(8) = H(@, P)) =) H(P), (12)
i=1
and consider maximization problems of the form, for given V € (k + 1),
H(wi_y PY). (13)

max
S=<V; |supp(S)|<m

In the special case of k = 1 and V = [d], we recover the problem (g).
First, we consider the special case where P is m-stationary with 7 taking on a product form. Similar
to the map @, we re-write the map as

k k

S f(8)=>_ H(xWI R PE)) -3 " H(x5)). (14)

=1 i=1

Since H (W(Si) X P(Si)) is monotonically non-decreasing and submodular, then by Corollary the
following function ¢ is monotonically non-decreasing and k-submodular

k
g9(8) =Y H(x$) ® PS1)), (15)
i=1

Since 7 is of product form, we denote the non-negative modular function c as

k

o(S) =Y H(x'%)). (16)

i=1
Therefore, we have
f(8) =g(S) —c(S),

and the distorted greedy algorithm yields an approximate maximizer with a lower bound as in Theo-
rem [2.16l

Corollary 3.3. Let P € L(X) be w-stationary where w is of product form. In Algorithm |3, we take g
as in and ¢ as in (16), and OPT = arg maxg_y. supp(S)|<m f(S). Then by Theorem we have
the following lower bound

f(Sm) = H(@{_, P¥)) > (1 - e7)g(OPT) — ¢(OPT),
where Sy, = (S, - - Sm.k) s the output of Algorithm @

In the special case where k = 1 and 'V = [d], we recover Corollary
Next, we investigate the case where P is m-stationary for general m which may not be of product
form. We first prove an orthant submodularity result.

Lemma 3.4. The map is orthant submodular.
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Proof. We shall prove that A.;f(S) > A.,;f(T), where we choose S < T and e ¢ supp(T). Given the
submodularity of S — H(P)), we have

H(PS:AeDy - g(pS)) > g(pTivted)) — g(p™)),
which is equivalent to A, ;f(S) > A f(T). O

In view of Theorem since the map is orthant submodular, then for any g € R, if S <V, we
have a monotonically non-decreasing k-submodular function g given by

k
g(S) =Y H(P®) B+Z > (H(PYMD) — H(PY)), (17)
i=1 i=1e€S;

and we also denote the following modular function

:_ﬁ+zz pVi{e }) H(P (Vi)))

i=1e€S;

AW L

i=1 e€S;

PO @ pVNED) _ gr(p©)), (18)

As H(P®)) < log|X(®)|, ¢ is ensured to be non-negative if g < — Zle > eev, log |X()]|. Since

k
1(8) = 3 H(P)) = g(8) - (S).

then we can apply Algorithm [3]to perform distorted greedy maximization with a guaranteed lower bound.

Corollary 3.5. Let P € L(X) be w-stationary and V € (k+ 1), In Algorithm@ we take g as in

and ¢ as in [18), B < — Zle > eev, log |X©)|, and OPT = arg maxg_y. isupp(S)|<m f(S). Therefore,
Theorem gives

f(8m) = H(@}_,P54)) > (1 - ')g(OPT) — ¢(OPT),
where Sy, = (Sm1, Sm,2s -« -, Sm.k) 45 the output of Algorithm @

Note that the lower bound of Corollary depends on S through ¢ and c. If g is chosen to be too
small, then the lower bound might be too loose as the right hand side might be negative.

4 Submodular optimization of distance to factorizability D(P| P
p(—S))

4.1 Submodular minimization of the distance to factorizability

For
oldl 5 § s D(P|| P @ P9),

we first recall that this map is submodular (see Lemma [2.10)). Since D(P||P*®) @ P(=%)) = D(P|P(-% ®
p(s )), then this map is also symmetric. In this case, there exists an algorithm for minimizing non-negative
symmetric submodular functions (see Theorem 14.25 of (Korte and Vygen, 2008)) that gives

S*e argmin  D(P|PY @ P(—9)
0#£SC[d]; |S|I<m

with time complexity O(d6). Here, § denotes the worst case time needed to evaluate D(P||P() @ P(—9))
for any given subset S.
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4.2 Submodular maximization of the distance to factorizability

Given P € L(X) and m € N, we aim to investigate the following submodular maximization problem
subject to a cardinality constraint

max  D(P||P® @ P9, (19)
SCld]; [S]<m

Since D(P||P®) @ P(—=%)) >0 and D(P||P® @ P(I?D) = 0, if we consider the unconstrained version
of , we can apply Algorithm |1f with (7 — 7) -approximation guarantee (see Theorem j since
D(P||P®) @ P(=9) is symmetric.

In view of Theorem [2.8] we choose 3 = 0 and take

g(S) = D(P||[P®) @ PC9) + 3" D(P| P9 @ P), (20)
ecS

which is submodular and monotonically non-decreasing. In this case, we also take the modular and
non-negative function ¢ to be

S)=>_"D(P|P") @ P). (21)
ecS

Therefore,
D(P||P'®) @ P9) = g(5) — ¢(S)

can be expressed as the difference of a non-negative, submodular, monotonically non-decreasing function
and a non-negative modular function, hence Algorithm [2| can be applied to approximately maximize
D(P||P®) @ P(=5)),

Corollary 4.1. Let P € L(X) be w-stationary. In Algomthm@, we take g as in and ¢ as in ,
and OPT = argmaxgcpap; |s1<m D(P||P®) @ P(=9)). By Theorem we have

D(P|[P®m) @ P9 > (1 - e7!)g(OPT) — ¢(OPT),

where Sy, is the final output set of Algorithm[3

4.3 k-submodular maximization of distance to factorizability of the ten-
sorized keep-S;-in matrices D(P||[P®) @ ... @ P @ p(-UiiS))

In this section, we investigate the following map
(k+ 1) 58 £(S) = D(P||PS) @ ... @ P @ P(-UiiSi), (22)
We consider the maximization problem of the form, for given V € (k + 1),

max D(P|P®V g ...@ PSW) g p-UimiSi), (23)
S=XV; [supp(S)|<m

In the special case of k =1 and V = [d]], we recover problem .
Lemma 4.2. The map is orthant submodular.

Proof. We shall prove that A, ; f(S) > A.;f(T), where we choose S < T and e ¢ supp(T). We compute
that

Acif(S) — Auif(T) = H(PSiieD)y — g(pBS)) 4 g(psuerS)Uie)) _ fr(p(—supp(S))
— H(PTAeD) 4 g(pT))y — g(plmswe(MUiel)y 4 g pl-supp(T)))
- {(H(p@iu{e})) — H(PS))) — (H(PTeD) — H(pm)))}
{ p(=supp(T)y _ pr(p(-supp(T)u{e})))
— (H(PserS) p(—supP(S)U{e})))}’

where each of the two terms above are non-negative given the submodularity of S ~ H(P®)) (recall
Theorem [2.10)). O
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In view of Theorem since the map is orthant submodular, for any g € R, if S <V, we have
a monotonically non-decreasing k-submodular function given by

k
g(S) = f(S)— B+ Z Z |:D(P||P(Vl) ® ... PViMeD) o o PV g P(*Supp(V)\{e})>
i=1 e€S;

_ D(P”P(Vl) R...0 P(V7) R...0 P(Vk) ® P(—SUPP(V)))}

-8+ Z 3 [ H(PVMeD) 4 g(plsuwp(VMeD) _ gr(pva)y — H(P@su,pp(v»)}
i=1e€S;

B+ZZ[

i=1e€S;

PVMeD g p@)y — p(psupp(VI\{e}) || p(=supp(V)) p(e))}’ (24)
and we also obtain the following modular function

k
S)=-8+ Z Z |:D(P(V'i)||P(Vi\{e}) ® p(e)) — D(p(—supp(v)\{e})||p(—supP(V)) ® p(@))] (25)
i=1e€S;

Thus, if we choose

( supp(V)\{e})) + H(P(e))) )

o33

then ¢ is non-negative. With these choices, f can be written as

_<M

£(S) = D(P|P®V) @ ... PK) g PEUZS)) = g(S) — ¢(S).
We can then apply Algorithm [3| to perform distorted greedy maximization with a lower bound.

Corollary 4.3. Let P € L(X) be w-stationary and V € (k+ 1), In Algarithm@ we take g as in
and ¢ as in . We choose

Z 3 ( —supp(V)\{e})) _|_H(p(e))) :

=1 e€V;

and let OPT = argmaxg v, supp(s)|<m f(S)- Therefore, Theorem gives
F(Sp) = D(P|PS»D) @ .. @ PSm) @ PUimaSni)) > (1 — ¢~1)g(OPT) — ¢(OPT),
where Sy, = (S, - - Sm.k) s the output of Algorithm @

Note that the lower bound of Corollary depends on S through g and c. If g is chosen to be too
small, then the lower bound might be too loose as the right hand side might be negative.

5 Supermodular minimization of distance to independence I(P))

Given P € L(X) and d,m > 2, we aim to investigate the following supermodular (recall Theorem [2.10))
minimization problem
in  I(P®). 26
scidtoin ) 26)
We shall be interested in the constraint |S| = m rather than |S| < m as in Section [3| and Section
because S — I(P)) is monotonically non-decreasing.

The supermodular minimization problem is equivalent to the following submodular maximization
problem

= —I(PY)) = HPY) H(P'®), 2
sggﬁﬁ’é:mﬂs) (P) = ;; (27)
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Note that we restrict m to be at least 2, since we have the trivial result that I(P(®)) = I(P) = 0 if the
constraint is m = 0 or m = 1. From Theorem f(S) is monotonically non-increasing and submodular.
Therefore, the heuristic greedy algorithm (see Section 4 of (Nemhauser et all [1978])) cannot provide a
theoretical guarantee.

In view of Theorem [2.8] for any 8 € R, we have a monotonically non-decreasing submodular function
g given by

9(S) = f(S) = B+ Y _(H(P"))+ H(P)) - H(P))
e€sS
= f(8)=B+>_ D(P|P o P (28)
eesS

We choose 6 = 0 and let the following non-negative, modular function be

S)=>_D(P|P'9 @ P (29)
ecS

so that f(S) = g(S) — ¢(S). By Theorem we can apply Algorithm [2] to obtain a lower bound.

Corollary 5.1. Let P € L(X) be w-stationary along with d,m > 2. In Algom'thm@ we take g as in ,
c as in , and OPT = maxgc[q); |5|=m f(S). By Theorem we have the following lower bound

F(Sm) = =L(P™)) > (1 - e71)g(OPT) — ¢(OPT),

where Sy, is the output of Algorithm[3

5.1 Supermodular minimization of distance to independence of the comple-
ment set ]I(P(_S))

From Theorem | I(P(—9)) is monotonically non-increasing and supermodular. Given P € L£(X),
d>2,and m < d 2, we shall investigate the following optimization problem

= (P9,
st Tien /(9 = 1P

Note that we restrict m to be at most d — 2, since we have the trivial result that I(P(¢)) = I(P(®) =0
if the constraint is m =d or m =d — 1.

Since f(S) = —]I(P(_S)) is monotonically non-decreasing and submodular, then we can apply the
heuristic greedy algorithm (see Section 4 of (Nemhauser et al.l [1978))) that comes along with a (1 —e™1)-
approximation guarantee.

5.2 k-supermodular minimization of distance to independence of the ten-
sorized keep-S;-in matrices I(®"_ P(%))
In this section, we investigate the following map
(k+ DM 58 =(Sy,...,8) = I(@k, P5)), (30)

Lemma 5.2. For k€ N and S € (k+ 1)l we have

I(@F_, P15y =3 "I(P),

Proof. We shall prove by induction on k. When k = 1, the equality trivially holds. When k = 2,

according to the chain rule of KL divergence (see Theorem 2.15 of (Polyanskiy and Wul, [2025])),
I(PSY @ P32)) = D(PY @ PO @ic,0s, PY)

= D(P)| ®;es, PD) + D(P®?)|| ®;cs, PY)

I(PYV)) 4 I(P52)).
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Suppose [(@™, P(5)) = 5" T(P(%)) holds (k = m), then using the chain rule of KL divergence again
(Theorem 2.15 of (Polyanskiy and Wul [2025))), we have
L@ PS)) = D(@7, PS) @ PEm)|| @;cum  syusmys PP)

= D(®£1P(Si) Ricur 8 p(i)) + D(P(Sm“)H ®ieSmis p(i))
m+1

= Z I(P).

O

Lemma 5.3. The map s pairwise monotonically non-decreasing. In particular, when P is non-
factorizable and m-stationary, the map s pairwise monotonically strictly increasing for all pairs.

Proof. Let f(S) = I(®%_, P(%)). We shall prove that A.;f(S) + A.;f(S) > 0, where i # j € [d] and
e & supp(T). Since I(P)) =3, H(PW) — H(P®)), we note that
Beif(8) + Aeif(8) = IPEEN) —1(PS)) 4 I(PELEN) —1(P1S))
— [H(P(e)) + H(P(Si)) — H(P(Siu{e}))]
+ [H(p(e)) +H(p(5j)) _ H(P(Sju{@}))]
= D(PSAeN| | pS) @ ple)y 4 p(pSiied) | plSi) g ple)),
which is non-negative. In particular, when P is non-factorizable, it is strictly positive. O

Lemma 5.4. The map is orthant supermodular.

Proof. Let f(S) =1(®F_,P5)). For any S < T, we shall prove that A.;f(S) < A.,;f(T), where i € [d]
and e € [d]\supp(T).

Acif(S) = Acif (T) = [H(PW) + H(PS)) — H(PE:P{e)]
_ [H(p(e)) _|_H(P(Tz‘)) _ H(P(Tiu{e}))]
= [H(p(TiU{e})) _ H(P(Ti))] _ I:H(P(Siu{e})) _ H(P(Si))} <0,

where the inequality holds owing to the submodularity of S +— H (P(S )) in view of Theorem m O

Collecting the previous two results, we see that, for non-factorizable P, the map is not k-
supermodular as k-supermodularity requires both the pairwise monotonically non-increasing property
and orthant supermodularity (see Theorem [2.5)).

Given P € L(X),dym > k+1and V € (k+ 1)[[dﬂ, since the map is orthant supermodular, we
are interested in the following orthant submodular maximization problem

k
max f(S) = —]I(@lep(si)) _ ZH(P(Si))'

S=V; |supp(S)|=m —
i—

We are restricting m to be at least k£ + 1 following the pigeonhole principle, as we need at least one S;
with |S;| > 1. If m < k, we can take either S; = {e} or S; = ) for all ¢ € [k] so that the optimization
problem becomes trivial.

In view of Theorem we have a monotonically non-decreasing and k-submodular function g given
by

k
9(8) = f(8) = B+ D Y [HPVMD) + H(P) — H(PY)]

i=1 e€S;

k
=) -+ > pP™

i=1 e€S;

pViMe}) g p(E)). (31)

We take 8 = 0, and denote the following non-negative modular function as

k
c(8)=>_> D@

i=1 e€S;

pViMed) g p(E)) (32)
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so that f(S) = g(S) — ¢(S). By applying Algorithm [3| we can obtain a result with the following lower
bound by Theorem [2.16}

Corollary 5.5. Let P € L(X) be mw-stationary along with d,m > k+1 and 'V € (k+1)[. In Algom'thm@
we take g as in (1), ¢ as in (32), and OPT = arg MAXg<v; [supp(S)|=m J (S); then by Theorem we

have the following lower bound
f(Sm) = —I(@f_ P¥m)) > (1 — e ")g(OPT) — ¢(OPT),
where Sy, = (Sm1,- -+, Sm.k) is the output of Algorithm @

In the special case where k =1 and V = [d]], we recover Corollary

5.3 k-supermodular minimization of distance to independence of the ten-
sorized keep-V;\S;-in matrices I(®F_, P(Vi\%))

For given V € (k4 1)l we consider the following map in view of Lemma

k
{Sek+DM; SXVEs8=(5,...,8) ~ I(@F, PV\5)) = 3 "(PVi\si)), (33)

i=1
We first prove a result concerning monotonicity and k-supermodularity of the map above.
Theorem 5.6. The map 18 monotonically non-increasing and k-supermodular.

Proof. In view of Theorem for each component S;, we take V; as the ground set, hence T(P(Vi\5:))
is monotonically non-increasing and supermodular. From Lemma this function is the sum of k
monotonically non-increasing and supermodular functions. From Lemma[2.6] we conclude that this map
is k-supermodular and monotonically non-increasing. O

Therefore, we denote the following monotonically non-decreasing, k-submodular function g as

k
9(8) = U@L, PV = =3 1(PVA), (34)

i=1

Givend > k+1, m <d—k — 1, we are interested in the following maximization problem given by

9(S)

max
S=XV; |supp(S)|<m

We are restricting m by m < d — k — 1 following the pigeonhole principle, as we want |V;\.S;| > 2 for
at least one i. If m > d — k, we can choose either V;\S; = {e} or V;\\S; = 0 so that the optimization
problem is trivial.

By taking ¢ = 0 as a non-negative modular function, we can apply Algorithm [3] to obtain an opti-
mization result with (1 — e~!)-approximation guarantee.

Corollary 5.7. Let P € L(X) be w-stationary along withd >k+1, m <d—k—1 and V € (k+ 1)l4,
In Algom'thm@ we take g as in , ¢ =0 and denote

OPT = argmax  ¢(S).
S2V; [supp(S)[<m

From Theorem [2.16, we can obtain the following lower bound
9(Sm) > (1 - e )g(OPT),

where Sy, = (Sm.1s- -+, Smk) 18 the output of Algorithm @
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6 Supermodular minimization of distance to stationarity D (P |11%)
In this section, we investigate the following map:
2ldl 5 5 D(PIH|II)), (35)

where II is the matrix of stationary distribution with each row of IT being m. We first show that this
map is monotonically non-decreasing.

Lemma 6.1. The map is monotonically non-decreasing.
Proof. We choose S C T C [d]. By the partition lemma (Theorem , we have
D(PH ) < p(PT|TD),
and hence this map is monotonically non-decreasing. O
We are interested in the following optimization problem

max  D(P®)|I®),
SCld]; |S|=m
as solving the above can help to identify coordinates which are furthest away from the equilibrium in
one step.

To solve this optimization problem with a theoretical guarantee, we recall the batch greedy algorithm
(Algorithm [4] see Theorem 7 of (Jagalur-Mohan and Marzouk, 2021))).

Algorithm 4 Batch greedy algorithm

Require: monotonically non-decreasing set function f; ground set U; total cardinality constraint m;
number of steps [ and cardinality constraints g; such that 22:1 g =m
: Initialize So - @
:fori=1tol do
Determine incremental gains f(S;—1 U {e}) — f(Si—1), Ve € U\S;_1
Find @, comprising the elements with top-g; incremental gains
Si +—Si-1UQ
end for
: Output: 5

NP g e

It turns out that the theoretical guarantee depends on the supermodularity ratio and submodularity
ratio of a set function f, that we shall now briefly recall. The supermodularity ratio of a non-negative
set function f (Definition 6 of (Jagalur-Mohan and Marzouk, 2021)) with respect to the set U and a
cardinality constraint m > 1 is

- FSUT) — 1(8)
SCU; T:|T|<m,5nT=0 > o[ f(S U {e}) — f(S)]

while the submodularity ratio of f (Definition 32 of (Jagalur-Mohan and Marzouk, [2021])) with respect
to the set U and a cardinality constraint £ > 1 is

Nnu,m =

_ : Yeerlf(SU{e}) = £(9)]
= s, vriemsnr=s f(SUT) = f(S)

We then state the lower bound pertaining to Algorithm 4| (see Theorem 7 of (Jagalur-Mohan and Mar-
zoukl, [2021])).

Theorem 6.2 (Lower bound for batch greedy algorithm). Let P € L(X) be w-stationary and U be the
ground set. Let f be a monotonically non-decreasing set function with f(0) = 0. Algorz'thm yields the
following lower bound

l
F(5) = (1 B H (1 a W)) sggr;l?;‘(\:mf(s)’

i=1

where S| is the output set of Algorithm[j)
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Since we have a monotonically mon-decreasing map with D(P(@)HH((D)) = 0, we can apply the
Algorithm [4] (see Theorem 7 of (Jagalur-Mohan and Marzouk}, [2021))) with the following lower bound.

Corollary 6.3. Let P € L(X) be w-stationary and U = [d] be the ground set. Let f be which is a
monotonically non-decreasing set function with f(0) = 0. Algorithm yields the following lower bound

l
G * MU.q; * VU.m
f(S) = (1 -1 (1 - m)) sepax _ F(9),

i=1
where Sy is the output set of Algorithm[4)

We now consider the special case where the stationary distribution 7 is of product form. In this case,
we can show the supermodularity of the map .

Lemma 6.4. The map is supermodular if P is w-stationary where w is of product form.

Proof.

8)((S) (S
D(PO |1y = Z Z 7 (2N PE) (209 45y 1 M

z(5) y<5> T3 (y)
=3 ST w S @) PO (), (5)) 1n 75 ()
() y(5)
)= 3 ) () 37 78 (25)) PO (5(5), (5))
y(S (8

—H(PO) + H(x).
The last equation holds since P is m-stationary and hence

= 37 2O (29 PE) (25, y(5)),

z(S)

Since the stationary distribution 7 is of product form, then 7 = @%_, 7 hence H(r(%)) = 3. ies H(7®),

which is a modular function. Also, since H(P(S)) is submodular, then —H(P®)) is supermodular.
Therefore, D(P)||T1%) is supermodular because it is a sum of a supermodular function and a modular
function. 0

We proceed to investigate the following optimization problem when P is w-stationary with product
form 7,

= —D(PYOTTO)Y.
scpnax,  f(8) (P [I=)

In view of Theorem [2.8] the following function g is monotonically non-decreasing and submodular
since f is submodular:

9(8) = £(5) = B+ (H(P") = H(x"9) — H(P) + H(m))

e€eS

— B+ _(D(P|P @ P"))+ D(P|)). (36)
eeS

Choosing 8 = 0, we denote the following non-negative modular function as
c(S) = Y (D(P||P' @ PU"9) + D(P)|TI)). (37)
ecsS
Since f(S) = g(S) — ¢(S), we apply Algorithm [2[ to obtain a result with the following lower bound:

Corollary 6.5. Let P € L(X) be w-stationary with w to be product form. In Algom'thm@ we take g as

in (BG), ¢ as in (B7), and OPT = argmaxgcpqp; |sj<m f(5). By Theorem we have the following
lower bound

f(Sm) = =D(PE[E)) > (1 - 1)g(OPT) — ¢(OPT),
where Sy, is the output set of Algorithm [3
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6.1 Supermodular minimization of distance to stationarity of the comple-
ment set D(P(9||I1(=9)

In this section, we shall investigate the following map:
oldl 5 5 s D(PES I, (38)

Owing to Lemma we first see that the map is monotonically non-increasing. In addition, the
map (38) is supermodular if P is w-stationary with product form 7 in view of Lemma and Lemma
We are interested in the following optimization problem

= (PO
sguiﬁafégmf(s) ( [ )s

as solving the above allows us to identify coordinates whose complement set is the closest to equilibrium
in one step.

Under the assumption of product form 7, as the map is monotonically non-increasing and super-
modular, f is monotonically non-decreasing and submodular. We apply the heuristic greedy algorithm
(Section 4 of (Nemhauser et all [1978)) to obtain an approximate maximizer along with a (1 —e™1)-
approximation guarantee.

6.2 k-supermodular minimization of distance to stationarity of tensorized
keep-S;-in matrices D(®F_, P || @k T1(59)

In this section, for given V € (k + 1)l we investigate the following map:

(k+ DM 58 =(51,...,5)  f(S) = D(®F, P5)|| @F_, 115)). (39)
We first give an orthant supermodularity result.
Lemma 6.6. The map is orthant supermodular if P is w-stationary where w is of product form.

Proof. By the chain rule or tensorization property of KL divergence (see Theorem 2.15 and 2.16 of
(Polyanskiy and Wul, 2025)), we see that

k
D(®§:1P(Si)” ®§:1 H(Si)) _ Z D(P(Si)”H(Si)).
i=1

We now take S < T and e € [d]\T;. By (@), we aim to show that A.;f(S) < A.;f(T), which indeed
holds since

Acif(S) = D(PEMED | SiAedy — p(pSI |15
< D(P(Tiu{e})”]___[(TiU{e})) _ D(P(Tz‘) H(Ti)) = A f(T),

because S +— D(PS)||TI) is supermodular (see Lemma [6.4)). O

We are interested in the following optimization problem

max —f(S),
S=<V; |supp(Swm)|<m f( )
where f is orthant supermodular.
In view of Theorem [2.9] we have the following monotonically non-decreasing, k-submodular function

g:

P @ pVi\)y 4 D(PE)||T1(9)Y). (40)

9(8) = 5+ZZ

i=1 e€S;

We take 5 = 0, and denote the non-negative modular function as

Yy

i=1 e€S;

pe ®p(V \8)) (p(e)HH(E)))_ (41)

Since —f(S) = ¢g(S) — ¢(S), we apply Algorithm [3| to obtain an approximate maximizer along with a
lower bound.
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Corollary 6.7. Let P € L(X) be w-stationary with © be of product form and V € (k+ DI, In
Algorithm [3, we take g as in [0), ¢ as in (@), and OPT = argmaxg_ v, jsupp(s,.)|<m —f(S). Then
Theorem gives the following lower bound

—f(Sm) = (1— ¢~1)g(OPT) - ¢(OPT),
where Sy, = (Sm.15- .., Sm,k) s the output of Algorithm @
6.3 k-supermodular minimization of distance to stationarity of tensorized
keep-V;\S;-in matrices D(®F_, PV:\%)|| @F_ T1(V:\5))
For given V € (k4 1)l we investigate the following map:

{(Sek+Dl s<V}s8=(S,...,5) — D@, PVAI) | gk 11(Vi\%)), (42)

Theorem 6.8. The map is monotonically non-increasing and k-supermodular if P is w-stationary
where  is of product form.

Proof. By the chain rule or tensorization property of KL divergence (see Theorem 2.15 and 2.16 of
(Polyanskiy and Wul, [2025)), we see that

k
D(@i?:lp(%\sqz)” ®i§:1 H(Vi\si)) — Z D(P(V;Z\S'i)HH(W\Si))’
i=1

which is a sum of k£ monotonically non-increasing and supermodular functions in view of Lemma[2.6] [

We are interested in the following optimization problem

max S) = —D(ekf_ PV || @k T(Vi\s), 43
S<v; ‘Supp(s)‘gmg( ) (®iz1 | @i ) (43)

Since the map is monotonically non-increasing and k-supermodular, then g is monotonically non-
decreasing and k-submodular. We apply Algorithm [3[to obtain a (1 — e~!)-approximation guarantee.

Corollary 6.9. Let P € L(X) be 7m-stationary with product form m and V € (k + 1)l We take g
as in [ 3), c =0 and OPT = arg MaXg gy, [supp(s)|<m 9(S). According to Theorem we have the
following lower bound for Algorithm[3

9(Sm) > (1 - e )g(OPT),
where Sy, = (Sm 1, - -+, Sm.k) is the output of Algorithm @

In the special case where k = 1 and V = [d], the above Corollary reduces to the (1 —e™!)-
approximation guarantee as in Section [6.1]

7 Distance to factorizability over a fixed set D(P(WUS) HP(W) ®
p(S))
We fix a set W C [d] and investigate the following function:
{SC[d]; SNW =0} 38— f(S) = D(PWVY) | PW) @ p)), (44)
We shall investigate the following optimization problem with cardinality constraint

f(9).

max
SC[d]; SAW=0; |S|=m

We pick S, T C {S C[d]; SNW =0} with S C T and compute that
F(8) = {(T) = [HPT) — H(PT)] - [H(PEW) — H(PW)] <0,

where the inequality follows from the property that S — H (P(S)) is submodular (see Theorem [2.10)).
Therefore f is monotonically non-decreasing. Also, f(#)) = D(PM)||[PW) @ P®) = 0. As such, we can
apply Algorithm [4] (see Theorem with a lower bound.
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Corollary 7.1. Let P € L(X) be w-stationary, W C [d], and U = [d]\W be the ground set. Let f be
which is a monotonically non-decreasing set function with f(0) = 0. Algorithm yields the following
lower bound

l
qi " MU,q; " YUm
> _ _ B Vg - 1Ym
f(Sl) - (1 H (1 m )) SC[d]; Sglmz}):(@; \S\:mf(S)’

i=1

where Sy is the output set of Algorithm[4)

8 Numerical experiments of Part [I]

We conduct a case study to evaluate the numerical performance of the submodular optimization algo-
rithms on the information-theoretic properties of multivariate Markov chains. We conduct numerical
experiments on the 10-dimensional Markov chains (d = 10) associated with the Curie-Weiss model and
the Bernoulli-Laplace level model (see Section for details). For the Curie-Weiss model, we choose
T = 10 as the temperature, h = 1 as the external magnetic field. For the Bernoulli-Laplace level model,
we choose the swapping size s = 1. For the numerical experiments of the generalized distorted greedy
algorithm (Algorithm , we choose k = 3 and the ground set V = (V4, V5, Vi), where Vi = {1,2, 3,4},
Vo =4{5,6,7} and V3 = {8,9,10}.

8.1 Experiment results of Section

In this section, we report the numerical experiment results related to Section [3] which contains the
performance of the heuristic greedy algorithm (see Section 4 of (Nemhauser et al., [1978])), the distorted
greedy algorithm (see Corollary , and the generalized distorted greedy algorithm (see Corollary
on the Bernoulli-Laplace level model and the Curie-Weiss model. For each experiment, we conduct
submodular optimization with cardinality constraint m, with m ranging from 1 to 10.

Greedy Distorted Greedy
m Subset S,, H(P(S"")) Subset S,, H(P(S""))
1 {10} 0.46094 {10} 0.46094
2 {3, 10} 0.83616 {1, 10} 0.83573
3 {1, 3, 10} 1.17940 {1, 2, 5} 1.18116
4 {1, 2, 3, 10} 1.49461 {1, 2, 3, 5} 1.50706
5 {1, 2, 3, 4, 10} 1.77855 {1, 2, 3, 4, 5} 1.80193
6 {1, 2, 3, 4, 5, 10} 2.03516 {1, 2, 3, 4, 5, 6} 2.06105
7 {1, 2, 3, 4, 5, 6, 10} 2.25729 {1, 2,3,4,5,6, 7} 2.28328
8 {1, 2,3,4,5,6,7, 10} 2.43498 {1, 2,3,4,5,6,7, 8} 2.45453
9 | {1,2,3,4,5,6,7,8,10} 2.51897 {1,2,3,4,5,6, 7, 8, 10} 2.51897
10 | {1, 2, 3,4, 5,6, 7,8, 10} 2.51897 {1, 2, 3,4, 5,6, 7, 8, 10} 2.51897

Table 1: Comparison of the greedy algorithm and the distorted greedy algorithm. Entropy rate of the
full chain of the Bernoulli-Laplace level model is H(P) = 1.96068.

IThe code is available at: https://github.com/zheyuanlai/SubmodOptMC.
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Figure 1: Entropy rate against subset size for the three algorithms (B-L model).

Cardinality m | Subset S,,; | Subset S,,» | Subset S,, 3 | H(®}_ , P(5m.))
1 0 0 {10} 0.46094
2 0 {7} {10} 0.90046
3 0 {7} {8, 9} 1.26966
4 {4} {7} {8, 9} 1.70072
5 {4} {5, 7} {8, 9} 2.08692
6 {4} {5, 6,7} {8, 9} 2.43035
7 {4} {5,6, 7} {8, 9, 10} 2.71405
8 {3, 4} {5, 6,7} {8, 9, 10} 3.10451
9 {1, 2, 4} {5,6, 7} {8,9, 10} 3.46267
10 {1, 2,3, 4} (5,6, 7} {8, 9, 10} 3.78968

Table 2: Performance evaluation of the generalized distorted greedy algorithm. Entropy rate of the full
chain of the Bernoulli-Laplace level model is H(P) = 1.96068.

For the Bernoulli-Laplace level model, Table |1| and Figure show the entropy rates of the output
of the greedy algorithm and the distorted greedy algorithm (Algorithm ; Table [2[ and Figure show
the entropy rates of the tensorized output of the generalized distorted greedy algorithm (Algorithm .

Greedy Distorted Greedy
m Subset Sy, H(P®m) Subset S, H(P®m)
1 {1} 0.29085 {1} 0.29085
2 {1, 10} 0.57371 {1, 10} 0.57371
3 {1,9, 10} 0.83933 {1,9, 10} 0.83933
4 {1, 2,9, 10} 1.09570 {1, 2,9, 10} 1.09570
5 {1,2,6,9, 10} 1.33953 {1,2,6,9, 10} 1.33953
6 {1,2,4,6,9, 10} 1.57098 {1,2,4,6,9, 10} 1.57098
7 {1,2,4,6,8,9, 10} 1.78757 {1,2,4,6,8,9, 10} 1.78757
8 {1,2,3,4,6,8,9, 10} 1.98500 {1,2,3,4,6,7,9, 10} 1.98458
9 | {1,2,3,4,6,7,8,9,10} | 215793 | {1,2,3,4,6,7,8 9,10} | 215793
10 | {1,2,3,4,5,6,7,8,9,10} | 229109 | {1,2,3,4,5,6,7,8,9,10} | 2.29109

Table 3: Comparison of the greedy algorithm and the distorted greedy algorithm. Entropy rate of the
full chain of the Curie-Weiss model is H(P) = 2.29109.
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Figure 2: Entropy rate against subset size for the three algorithms (C-W model).

Cardinality m | Subset S,,; | Subset S,,» | Subset S,, 3 | H(®}_ , P(5m.))
1 {1} 0 0 0.29085
2 {1} {7} 0 0.57067
3 {1} {7} {10} 0.86152
4 {1} {5,7} {10} 1.13316
5 (1} (5,7} {9,10} 1.40732
6 {1} {5,6,7} {9,10} 1.66816
7 {1} {5,6,7} {8,9,10} 1.93090
8 {1,2} {5,6,7} {8,9,10} 2.20505
9 {1,2,4} {5,6,7} {8,9,10} 2.46832
10 {1,2,3,4} {5,6,7} {8,9,10} 2.72011

Table 4: Performance evaluation of the generalized distorted greedy algorithm. Entropy rate of the full
chain of the Curie-Weiss model is H(P) = 2.29109.

For the Curie-Weiss model, Table |3| and Figure [2a]show the entropy rates of the output of the greedy
algorithm and the distorted greedy algorithm (Algorithm ; Table |4 and Figure show the entropy
rates of the tensorized output of the generalized distorted greedy algorithm (Algorithm .

Notably, in Table [I| and Figure the distorted greedy algorithm outperforms the heuristic greedy
algorithm when the cardinality constraint equals to m = 3,4,5,6,7,8. This is because, in the distorted
greedy algorithm, the distortion term (1 — L)™~=(+1 at each step is different with different cardinality
constraint m, which results in possibly better or different results than the heuristic greedy algorithm.
However, the distorted greedy algorithm does not necessarily select better subset than the heuristic
greedy algorithm, see the example of m = 2 in Table [l and m = 8 in Table

8.2 Experiment results of Section

We report the numerical experiment results related to Section [, which contains the performance of
the heuristic greedy algorithm (Section 4 of (Nemhauser et al.l [1978))), the distorted greedy algorithm
(Algorithm , and the generalized distorted greedy algorithm (Algorithm [3]) on the Curie-Weiss model.
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Greedy Distorted Greedy
m | Subset S,, | D (P[P @ PUS)) | Subset S, | D (P[P @ PU5n))
1 {6} 0.14837 {6} 0.14837
2 {2,6} 0.24497 {3,10} 0.24496
3 {2,6,9} 0.30927 {3,7} 0.24525
4 {2,5,6,9} 0.34590 {2,7,10} 0.30905
5 1 {2,3,5,6,9} 0.35758 {2,3,6,10} 0.34590

Table 5: Comparison of the greedy algorithm and the distorted greedy algorithm.
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For the experiments related to heuristic greedy and distorted greedy algorithms, since the map
S+ D(P||P®) @ P(=9)) is symmetric, we conduct submodular maximization with cardinality constraint
m, with m only ranging from 1 to 5. The results are shown on Table [5| and Figure These results
show that although the distorted greedy algorithm has a lower bound as detailed in Corollary the
performance is not guaranteed to be better than the heuristic greedy algorithm. We also conduct the
generalized distorted greedy algorithm as detailed in Corollary [4.3| with cardinality constraint m ranging
from 1 to 10, and the results are shown on Table [ and Figure

m | Subset 5,1 | Subset S,,.» | Subset S, | D (P| (23, P5")) @ P-Uiasn))
1 ] {67 ) 0.14836
2 0 {7} (8} 0.25388
3 {4} ! {8} 0.33529
4 {4} (5,7} {8} 0.39056
5 (2,4} 5,7} (8} 0.43104
6 (2,4} (5,7} (8,10} 0.45978
7 (2,4} {5,6.7} (8,10} 0.46887
8 (2,4} {5,6.7} (8,10} 0.46887
9 (2,4} {5,6.7} (8,10} 0.46887
0] {2.4) {5,6,7} (8,10} 0.46887

Table 6: Performance evaluation of the generalized distorted greedy algorithm.

We conduct similar numerical experiments on the Bernoulli-Laplace level model. Among all cardi-
nality constraints, the greedy algorithm and the distorted greedy algorithm output S, = {10}, and the
generalized distorted greedy algorithm outputs Sy, 1 = Sp.2 = 0, Si.3 = {10}. The reason behind it is
that for a 10-dimensional Markov chain, the coordinate 10 is “far” from other coordinates.
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8.3 Experiment results of Section

We report the numerical experiment results related to Section [5] which contains the performance of
the heuristic greedy algorithm (see Section 4 of (Nemhauser et all [1978)), the distorted greedy algo-
rithm (see Corollary , and the generalized distorted greedy algorithm (see Corollary on the
Bernoulli-Laplace level model and the Curie-Weiss model. For each experiment, we conduct supermod-
ular minimization with different cardinality constraint m’s.

For the Bernoulli-Laplace level model, Table [7] and Figure [4a] show the distance to independence of
the outputs of the greedy algorithm and the distorted greedy algorithm (Algorithm . We note that
the distorted greedy algorithm often outperforms the greedy algorithm. Table [§| and Figure show
the distance to independence of the tensorized outputs of the generalized distorted greedy algorithm
(Algorithm (3).

Greedy Distorted Greedy
m Subset Sy, I(P(m)) Subset S, T(P(Sm))
2 {1, 10} 0.05140 {1, 2} 0.03406
3 {1, 2, 10} 0.13505 {1, 2, 3} 0.10318
4 {1, 2, 3, 10} 0.24989 {1, 2, 3, 4} 0.20793
5 {1, 2, 3, 4, 10} 0.39701 {1, 2, 3, 4, 5} 0.34753
6 {1, 2, 3, 4, 5, 10} 0.57523 {1, 2, 3, 4, 5, 6} 0.52441
7 {1, 2, 3, 4, 5, 6, 10} 0.78911 {1,2,3,4,5,6, 7} 0.74171
8 {1, 2,3,4,5,6, 7, 10} 1.05094 {1,2,3,4,5,6,7, 8} 1.01576
9 {1,2,3,4,5,6, 7,8, 10} 1.41226 {1,2,3,4,5,6, 7,8, 10} 1.41226
10 | {1,2,3,4,5,6,7,8,9,10} | 2.41825 | {1,2,3,4,5,6,7,8,9,10} | 2.41825

Table 7: Comparison of the greedy algorithm and the distorted greedy algorithm (B-L model).

Distance to independence of the output against subset size

m | Subset S,,,; | Subset S,,> | Subset S, 3 | I (®§’:1P(sm=i))
4 {1, 2} {5} {8} 0.03406
5 {1, 2} {5, 6} {8} 0.07999
6 {1, 2} {5, 6} {8, 9} 0.14286
7 {1, 2, 3} {5, 6} {8, 9} 0.21199
8 {1, 2, 3} {5, 6, 7} {8, 9} 0.30727
9 {1, 2, 3, 4} {5, 6, 7} {8, 9} 0.41202
10 | {1, 2,3, 4} {5, 6, 7} {8, 9, 10} 0.58925

Table 8: Performance evaluation of the generalized distorted greedy algorithm (B-L model).
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Table 9: Comparison of the greedy algorithm and the distorted greedy algorithm (C-W model).

Greedy Distorted Greedy
m Subset S, I(P(5m)) Subset S,, T(P(Sm))
2 {4, 10} 0.00757 {1, 7} 0.00757
3 {4, 7, 10} 0.02350 {1, 6, 10} 0.02398
4 {2, 4, 7,10} 0.04889 {1, 5, 7, 10} 0.04961
5 {2, 4, 6,7, 10} 0.08592 {1, 3,5, 7, 10} 0.08591
6 {2,4,6,7,8, 10} 0.13555 {1, 3,5, 7, 8, 10} 0.13533
7 {2, 3,4,6, 7,8, 10} 0.19989 {1, 3, 4,5, 7, 8, 10} 0.20017
8 {2, 3,4,5,6,7,8, 10} 0.28356 {1, 3, 4, 5,6, 7,8, 10} 0.28399
9 {2,3,4,5,6,7,8,9, 10} 0.39102 {1, 3,4,5,6,7,8,9, 10} 0.39191
10 | {1,2,3,4,5,6,7,8,9,10} | 0.53813 | {1,2,3,4,5,6,7,8,9,10} | 0.53813

m | Subset S,,; | Subset S,, > | Subset S, 3 | I (®f:1P(vai))
4 ISy} 5,7} IS 0.00778
5 (1, 4} (5,7} (8} 0.01556
6 (1,4} (5.7} (8, 10} 0.02376
7 (1,3 4) (5,7} (8, 10} 0.04172
8 | {1,3,4) (5,6, 7} {8, 10} 0.06029
9 | 1,34 (5,6, 7} (8,9, 10} 0.07972
10| {1,2, 3,4} (5, 6,7} (8,9, 10} 0.10911

Table 10: Performance evaluation of the generalized distorted greedy algorithm (C-W model).
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Figure 5: Distance to independence against subset size for the three algorithms (C-W model).

For the Curie-Weiss model, Table [9] and Figure [fa] show the distance of independence of the outputs
of the greedy algorithm and the distorted greedy algorithm (Algorithm , in which these two algorithms
output similar results. Table and Figure show the distance of independence of the tensorized
outputs of the generalized distorted greedy algorithm (Algorithm .

In addition, we report the numerical experiment results related to the distance to independence of
the complement set, as detailed in Section and Section[5.3] The performance of the greedy algorithm
on the two models is shown in Table|l1|and Figure while the performance of the generalized distorted
greedy algorithm can be seen from Table [I2] and Figure [6H}
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Bernoulli-Laplace Curie-Weiss
m Subset S, I(P(=5m)) Subset S, I(P(=Sm))
1 {9} 1.41226 {1} 0.39102
2 {9, 10} 1.01576 {1, 10} 0.28314
3 {8, 9, 10} 0.74171 {1, 5, 10} 0.19981
4 {7, 8,9, 10} 0.52441 {1, 5, 7, 10} 0.13517
5 {6, 7, 8,9, 10} 0.34753 {1, 3,5, 7, 10} 0.08523
6 {5, 6,7,8,9, 10} 0.20793 {1, 3,5, 7,8, 10} 0.04845
7 {4, 5 6,7,8,9, 10} 0.10318 {1, 3,4,5,7,8, 10} 0.02304
8 {37 4,5,6,7,8,9, 10} 0.03406 {1, 3,4,5,7,8,9, 10} 0.00736
Table 11: Performance evaluation of greedy algorithm.
Bernoulli-Laplace Curie-Weiss
m Sm,l Sm,Z Sm,S ]I (®?:1P(7Sm’i)) Sm,l Sm,Z Sm,?) I[ (®?:1P(7Sm’i))
1 0 {10} 0.41202 {2} 0 0 0.07972
2 {4} 1] {10} 0.30727 {2} 1] {9} 0.06029
3 {4} {7} {10} 0.21198 {2} {6} {9} 0.04172
4 | {3, 4} {7} {10} 0.14286 {2, 3} {6} {9} 0.02376
5 {3, 4} {7} {9, 10} 0.07999 {2, 3} {6} {9, 10} 0.01556
6 {3, 4} {5, 7} {9, 10} 0.03406 {1, 2, 3} {6} {9, 10} 0.00778
Table 12: Performance evaluation of the generalized distorted greedy algorithm.
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Figure 6: Distance to independence of the complement set against subset size.

8.4 Experiment results of Section [6]

We first report the numerical experiment results related to Algorithm 4l For both the Bernoulli-Laplace
level model and the Curie-Weiss model, we consider the following two configurations of the batch greedy
algorithm to maximize D(P()||TI¥)) subject to the cardinality constraint m:

e Approach 1: I =m and ¢; =1 for i € [I];
e Approach 2: [ = [F], ¢; =2 fori € [l = 1]; ¢ = 2 if m is even, ¢, = 1 if m is odd.

In Approach 1, we recover the heuristic greedy algorithm since we are adding one element per iteration.
We compare the performance of Approach 1 and Approach 2 for both models, and the results are shown
in Table[[3]and Table[I4 Although the stationary distribution 7 of the Bernoulli-Laplace level model and
the Curie-Weiss model are not of product form, we still apply the heuristic distorted greedy algorithm
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as in Corollary and the results are summarized in Table The comparison of these algorithms on
the two models is shown in Figure

From these results, one can conclude that the performance of Approach 1 is slightly better than
Approach 2, and the performance of the distorted greedy algorithm is the worst among the three ap-
proaches.

Approach 1 Approach 2
m Subset S, D(PEI|IGD) Subset S, D(PEI|TIE)
1 {1} 0.26693 {1} 0.26693
2 {1,2} 0.59421 {1,2} 0.59421
3 {1,2,7} 0.98856 {1,2,7} 0.98856
4 {1,2,7,10} 1.47330 {1,2,4,7} 1.46082
5 {1,2,7,9,10} 2.07889 {1,2,4,7,10} 2.03226
6 {1,2,7,8,9,10} 2.85834 {1,2,4,7,9,10} 2.73225
7 {1,2,6,7,8,9,10} 3.70196 {1,2,4,7,8,9,10} 3.64286
8 {1,2,5,6,7,8,9,10} 4.69790 {1,2,4,6,7,8,9,10} 4.65621
9 | {1,2,4,5,6,7,8,9,10} 5.91911 {1,2,4,5,6,7,8,9,10} 5.91911
10 | {1,2,3,4,5,6,7,8,9,10} 7.56130 {1,2,3,4,5,6,7,8,9,10} 7.56130

Table 13: Comparison of different configurations of the batch greedy algorithm (B-L model).

Approach 1 Approach 2
m Subset S D(PBSO|TI0) Subset S D(PBSI|TI0)
1 {6} 0.40245 {6} 0.40245
2 {3, 6} 0.81082 {5, 6} 0.80739
3 {3, 6, 8} 1.22606 {5, 6, 8} 1.22234
4 {3, 4, 6, 8} 1.64626 {3, 5, 6, 8} 1.64615
5 {3, 4, 6, 8, 9} 2.07613 {2, 3, 5, 6, 8} 2.07601
6 {2, 3,4,6,8,9} 2.51741 {2,3,5,6,8,9} 2.51771
7 {2, 3,4, 5, 6, 8, 9} 2.97051 {2, 3,4, 5,6, 8,9} 2.97051
8 {1, 2, 3, 4, 6, 8, 9} 3.44141 {2,3,4,5,6,7,8,9} 3.44085
9 {1, 2, 3, 4, 6, 8,9, 10} 3.93647 {1,2,3,4,5,6,7,8, 9} 3.93568
10 | {1,2,3,4,5,6,7,8,9, 10} 4.46975 {1,2,3,4,5,6,7,8,9, 10} 4.46975

Table 14: Comparison of different configurations of the batch greedy algorithm (C-W model).

Bernoulli-Laplace level model Curie-Weiss model
m Subset S, D(PE=) || TI(5m)) Subset S, D(PE=) | TI(5m))
1 {10} 0.23219 {1y 0.39435
2 {1, 10} 0.57719 {1, 10} 0.79669
3 {1, 2, 10} 0.98552 {1, 2, 10} 1.20915
4 {1, 2, 3, 5} 1.45314 {1, 2, 9, 10} 1.63086
5 {1, 2, 3, 4, 5} 1.99871 {1, 2, 3, 9, 10} 2.06307
6 {1, 2, 3, 4, 5, 6} 2.63821 {1, 2, 3, 8,9, 10} 2.50704
7 {1,2,3,4,5,6, 7} 3.39168 {1, 2, 3,4, 8,9, 10} 2.96498
8 {1,2,3,4,5,6, 7, 8} 4.30094 {1, 2,3,4,5,8,9, 10} 3.43971
9 {1,2,3,4,5,6, 7,8, 10} 5.46950 {1, 2, 3,4,5,6,8,9, 10} 3.93647
10 | {1,2,3,4,5,6,7,8,9, 10} 7.56130 {1,2,3,4,5,6,7,8,9, 10} 4.46975

Table 15: Performance evaluation of the distorted greedy algorithm.
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Figure 7: Distance to stationarity of the output against subset size.

We then report the numerical experiment results in Section see Table and Figure Note
that since the stationary distributions of the Bernoulli-Laplace level model and the Curie-Weiss model
are not of product form, these simulations are heuristic in nature, as Corollary [6.7] does not provide a
theoretical guarantee in this setting.

Table 16: Performance evaluation of Algorithm [3| “Value” refers to D(®3_, P(Sm.)

Distance to stationarity

Bernoulli-Laplace level model Curie-Weiss model

m Sm,l Smg Sm,g Value Sm71 Sm72 Sm73 Value

1 0 0 {10} 0.23191 {1 0 0 0.39436
2 0 {7} {10} 0.48566 {1} 0 {10} 0.78871
3 {4} {7} {10} 0.74787 {1} {7} {10} 1.19100
4 {3,4} {7} {10} 1.07820 {1} {7} {9,10}  1.59492
5 {3,4} {5,7} {10} 1.41218 {1,2} {7} {9,10}  1.99886
6 {3,4} {5,7} {8,10} 1.76157 {1,2} {6,7} {9,10}  2.40381
7 {1,3,4} {5,7} {8,10}  2.15778 {1,2} {5,6,7}  {9,10}  2.81582
8 {1,3,4} {5,6,7} {8,10} 2.56632 | {1,2,3} {5,6,7} {9,10}  3.22828
9 {1,3,4}  {5,6,7} {8,9,10} 3.02745 | {1,2,3}  {5,6,7} {8,9,10} 3.64075
10 | {1,2,3,4} {5,6,7} {8,9,10} 3.49326 | {1,2,3,4} {5,6,7} {8,9,10} 4.06242
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Figure 8: Performance evaluation of the generalized distorted greedy algorithm.

35



We proceed to present the numerical experiment results in Section and Section (see Table
Table and Figure [9). Note that since the stationary distribution 7 of both models is not of product
form, we do not have the (1 — e~!)-approximation guarantee.

Bernoulli-Laplace level model Curie-Weiss model
m Subset S, D(PSm)|II=5m)) Subset S, D(PESm)|II=5m))
1 {9} 5.46950 {10} 3.93568
2 {9, 10} 4.30094 {9, 10} 3.43908
3 {8, 9, 10} 3.39168 {8, 9, 10} 2.96487
4 {7, 8,9, 10} 2.63821 {7, 8,9, 10} 2.507645
5 {6,7,8,9, 10} 1.99871 {6, 7, 8,9, 10} 2.06420
6 {4,6,7,38,9, 10} 1.45314 {5, 6,7,8,9, 10} 1.63242
7 {3,4,6,7,8,9, 10} 0.98630 {4,5,6,7,8,9, 10} 1.21075
8 {1, 3,4,6,7,8,9, 10} 0.58961 {3,4,5,6,7,38,9, 10} 0.79828
9 {1,2,3,4,6,7,8,9, 10} 0.25830 {2,3,4,5,6,7,8,9, 10} 0.39435
10 | {1,2,3,4,5,6,7,8,9, 10} 0.00000 {1,2,3,4,5,6,7,8,9, 10} 0.00000

Table 17: Performance evaluation of the greedy algorithm.

Bernoulli-Laplace level model Curie-Weiss model
m Sm.,1 Sm.2 Sm.3 Value Sm.1 S 2 Sm.3 Value
1 {4} 0 0 3.02668 {4} 0 0 3.64075
2 {4} 0 {9} 2.56554 {4} 0 {8} 3.22828
3 {4} {6} {9} 2.15700 {3,4} U {8} 2.81582
4 {1,4} {6} {9} 1.76235 {3,4} {5} {8} 2.40381
5 {1,4} {6} {8,9} 1.41297 {3,4} {5,6} {8} 1.99886
6 {1,4} {5,6} {8,9} 1.07899 | {2,3,4} {5,6} {8} 1.59492
7 {1,2,4} {5,6} {8,9} 0.74955 | {2,3,4} {5,6} {8,9} 1.19099
8 | {1,2,3,4} {5,6} {8,9} 0.48566 | {2,3,4} {5,6,7} {8,9} 0.78871
9 | {1,2,3,4} {5,6,7} {8,9} 0.23191 | {2,3,4} {5,6,7} {8,9,10} 0.39436
10 | {1,2,3,4} {5,6,7} {8,9,10} 0.00000 | {1,2,3,4} {5,6,7} {8,9,10} 0.00000

Table 18: Performance evaluation of Algorithm 3| “Value” refers to D(®3_,; P(Vi\Sm.) || @3_, TI(Vi\Sm.)),
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Figure 9: Distance to stationarity of the complement set against subset size.

8.5 Experiment results of Section

We perform Algorithm [4| with the following configuration: [ =

(5], ¢ =2forie[l-1]; ¢ =2 if m
is even, ¢; = 1 if m is odd. We choose the fixed subset as W = {1,

2,3}. The performance of the batch
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greedy algorithm on the two models is shown in Table [19| and Figure

Bernoulli-Laplace level model Curie-Weiss model
m Subset S D(PWUS)|| PW) g p(s)) Subset S, D(PWUS) || pW) & p(S1)
1 {10} 0.14671 {4} 0.02751
2 {9, 10} 0.26354 {4, 10} 0.05651
3 {8,9,10} 0.37787 {4,5,10} 0.08919
4 {7,8,9,10} 0.49198 {4,5,9,10} 0.12616
5 {6,7,8,9,10} 0.61908 {4,5,6,9,10} 0.17028
6 {5,6,7,8,9,10} 0.79889 {4,5,6,8,9,10} 0.22527
7 | {4,5,6,7,8,9,10} 1.06993 {4,5,6,7,8,9,10} 0.30491

Table 19
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Part II
Minimax factorization for a family of
multivariate Markov chains

9 The minimax optimization problem
We denote a feasible set F for the choice of factorizable transition matrix Q:
F=F6):={QecL(X); S=(S1,....5) € m+ DI Q=05 g.. . 0Q")}
We are interested in the following minimax optimization problem

min max D, (P[|Q), (45)

in words, we seek to find an optimal factorizable ) € F that minimize the worst-case information loss
in approximating members of B.
Since F is not a convex set, we denote

M = {M e RI¥IXI*y

as the set of matrices on the state space X and study the weighted geometric mean and the following
set:

l
A= {AEM dleN,ce S st. Alx,y) = Zczlong(xy) Ve,y; Qi € F, Vze[[l]]}
=1
Lemma 9.1. The set A is convex.

Proof. We choose A, B € A such that there exists c € S;, d € S, Q;, Rj € F for i € [I],j € [k] and for
all x,y we have

k
Zczlogcyzxm = dilog Ri(,y).
i=1 =1
We choose a € [0,1] and calculate that
k
aA(z,y)+(1—«a)B Zacl log Qi(z,y) + Z(l — a)d;log R;(z,vy).
i=1 i=1
We thus conclude that aA 4+ (1 — a)B € A, and hence A is convex. O

We define the elementwise exponential of a matrix M € M to be exp M, that is, for all z,y € X,

exp M (z,y) := eM@y),

We then define the generalized KL divergence from the non-negative and not necessarily stochastic
matrix exp A to P to be

P(z,y)

Di,,(P||A) := Zﬂ PG y)log v w)

= Z P(z,y)log P(z,y) — ZW(I)P(%Q)A(%Z/)7

which is linear in A, hence the map A > A — lNDQL (P||A) is convex.
We study the following minimax optimization problem

min max Df, (PI|A), (46)
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and we can reformulate it as

min 7 (47)
AcA, r

s.t.  DEL(P||A) <, Vie [n],
which is a constrained convex minimization problem.

Comparing problem with problem ([46]), we note that for every @ € F, we can define an associated
A € A such that A(x,y) = log Q(x,y), and hence we have the following inequality:

>
min max Dic;,(P[|Q) > min max Di, (Pl A). (48)

Suppose A € A such that exp A(x,y) = H§:1 Qi(x,y)° for any x,y, we then show a Pythagorean
identity based on the proof of Theorem 2.22 of (Choi et al., 2024)):

DR P(z,y)
D% (P||A) = (@) P(a.y) log — B Y)
KL( || ) TZ7y ( ) ( y) gl—[ézl Qi(xay)ci
= Dl (Pl @1 P(Si)) + Zw(x)P(%y) log w
7 [T Qi(x,y)e

m l
= Dy (Pl @, POI) + 37 " ¢; Dy (P

i=1 j=1
where A* = A*(S1,...,Sm, P) € Ais defined to be
A (2, y) = log(®7y P (2, 9)).

Inspired by and Lemma for given w € S,,, we show a weighted version of Pythagorean
identity for generalized KL divergence:

n _ n Pz(xvy)
DL (Pi||A) = RCE T r——
2 wiDRe(PIA) = 3 wi 3 mle)Pia)log 0 5 mn

Wy > D (PIA"), (49)

i=1
n -(83)
(S) ®7n P (:I: y>
:szDKL(PH R P 4> wi Y (@) P, y)log—
i=1 z,y Hk 1Qk($ y>
n m 1
- —(55) 75 —(S;) S;
=Y wiDf (P @7 P7) + 30 e D (1@ (50)
i=1 j=1k=1
> wDEy (P A (w)),
i=1
where A% (w) = AX(w,S1,...,5m,B) € Ais defined to be, for all z,y € X,
* R m *(Sj)
An(x7y) T 10g(®j=1P )(xvy)
In the special case that n = 1, we recover that A} = A*.
For the problem , we denote the Lagrangian L : Ry x A X R to be
L(r, A,w) =1+ _wi(Diy,(Fil|4) =), (51)

i=1

where w is the associated Lagrangian multiplier.
From the Pythagorean identity (50]), the dual problem of can be written as

max min  L(rA,w)= max gleig;wiDI’EL(HIIA) = vrglea}é;wiDﬁL(PiHAZ(W))- (52)

The main results in this section are that strong duality holds for problem (47)), and problem and
are equivalent. We write the results in the following theorem.
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1. The strong duality holds for problem and there exists w* € S,, such that

)

Theorem 9.2.
= max ZwlDKL(P | A% (w Zw*DgL(P | A% (w

min max Df; (P||A) =
i=1

AcA PeB

2. Suppose the pair (A,r) € A x Ry minimizes the primal problem and w* € §,, mazximizes the
dual problem , then the following complementary slackness results hold: for i € [n], we have

r, ifw > 0;
DR (PilA4) {< A

3. Problems (45) and (46) are equivalent, i.e.
min max D%, (P||Q) = min max D, (P||A
Qel a kL (P[Q) el PEaB kL (P[|A).

4. The same w* € S,, from item satisfies

gleln maxDKL(PHQ) = vrglea}g)i ;szﬁL(Pz” ®p, P( )(Sk)) — ;IUZDITEL(RH ®peq ?(W*)(Sk)).
5. The map

Sn 3w Y wiDEy, (P @y P(w)t5+)

i=1
18 concave in w.
Proof. We first show item 7 i.e., strong duality holds for problem . We shall show that the Slater’s
qualification is verified (see Section 5.2.3 of (Boyd and Vandenberghel [2004)) and Appendix A of (Beck]
which requires that the constraints in (47) are strictly feasible. We take any A and

2017)),

r = max Dy (P 4) +1 > D (R|A), ¥ € [n].
€n

hence the strong duality holds. Therefore we have

min max D% (P||A) =
i=1

AcA P
As the strong duality in item holds, by Section 5.5.2 of (Boyd and Vandenberghe, |2004), the comple-

mentary slackness condition holds, i.e.
w; (Dgy(Fi]|A) —r) =0,

which is equivalent to

r, ifw!>0;
DZ (P||A ’ ! ’
k(B ){<7“ if wy =0,

for all i € [n], hence it proves item (2).
We proceed to prove item . Let j € [n] be an index where w; >0, we want to show

D, (Py|l 45 (w")) = max D, (P A} (w")).
As it is clear to see that D, (Pj|| Ay, (w*)) < maxepy D, (Py||A%(w*)), we then assume the contrary

that
Do (B |45, (w")) < macx Diey (P45, (w"))-
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That is, there exists an index [* such that
Dy, (B[ A5 (w™)) < Dy (Bre || A7 (W)
By strong duality, we have wj. = 0, then by complementary slackness in item , we have

Dfr,(Pr- || 4, (w")) < 7 = Dy, (Py || 4;,(w")) < Dig (Pr-

AL (W),
which leads to a contradiction. It therefore yields
D (Pjl| Az (w?)) = e Dir, (P A7(w7)).

By recalling the definition of generalized KL divergence and , we have

n
gleln rlrjlggDKL(PHQ) > glelﬁrgagDKL(PHA) = max ;wlDEL(B”A:(W))

—gﬁDKL(PlHA*( w")) = Dy, (P 4, (w"))

= DE, (P|| @7, P(w*)5k)) > DZ, (P
max kL (Pl @py P(w™)7F)) Crznemmax kL(PlQ),

therefore we obtain

DT (P = DZ, (P||A
Crgnelnmax kL(PlQ) = %E\%@l}; kL (PlIA),

hence problem and problem are equivalent. Therefore, for the w* € §,, in item (|1), we have

DiL(P|Q) = DE. (P||A) *DIL(Pi|| AX (w*
énemmax kL (PllQ) = Egi{%g,’; &L (Pl ;wz &L (Pill A7 (w™))

=" WD (B @, P(w*)(5H),

i=1

which proves item .
We then show item . From , we have

> wiDR (P S PO ) = S Dy (PIlAL) = _in_ L0, A, w),
i=1 i=1 ’

hence the map

Su3wi Y wiDEy (P @f, Plw) )

i=1

is concave since it is the Lagrangian dual function of problem (see Section 5.1.2 of (Boyd and
Vandenberghe, 2004)). O

10 An information-theoretic game

Inspired by the reversiblization entropy games in (Choi and Wolfer} 2025, we cast the minimax problem
as a two-player zero-sum game between Nature and a probabilist. Nature chooses a transition probability
matrix P € B, while the probabilist chooses an approximating factorizable transition matrix @ € F =
F(S). The payoft is the KL divergence D%y (P]|@), which Nature aims to mazimize while the probabilist
aims to minimize.

In the pure strategy game, Nature selects a single P € B and the probabilist selects a single @ € F. In
the mixzed strategy game, Nature is permitted to randomize over B according to a probability distribution
i € P(B) (which corresponds to a weight vector w € S,,), while the probabilist still chooses a single
Qe F.
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We adapt the following notation for some related minimax and maximin values:

V=V(8.8) = iy max | DRa(PIQu(aP)

V=V(S,B) = max min | D (P||Q)u(dP
V=V(S,B) uegB)QEI}'/ kL (PllQ)u(dP),
SB—mnme PllQ

v =7( ) Qelf ax Dip, (P @),

=v(S,B) = Dg(P||Q).
v =1u(S, B) = max min Die; (P[|Q)
From item (4)) of Theorem the pure-strategy minimax value v is equivalent to the dual problem:

5(5; ))

7 = min max D (P||Q) = Iax szDKL(P | @7, P (53)

QEF PeB

The following theorem establishes the existence of a mixed-strategy Nash equilibrium (see Section 3
of (Osborne and Rubinstein), [1994])), which is a foundational result in game theory.

Theorem 10.1 (Existence of mixed strategy Nash equilibrium). Consider the two-person mized strategy
game with respect to parameters (S, B),

1. The mized strateqy Nash equilibrium always exists. That is, the value of the game is well-defined
and given by

AV - ™ m —-(55)
V(S,B) = V(S,B) = max Z;wiDKL(PiH R, P,

2. The mized strategy Nash equilibrium is attained at (Q*, u*), where pu* is represented by the optimal
weight vector w* € S, and Q* is the information projection of the corresponding weighted average

P(w*) onto F, i.e.
Q" = & P,

Proof. We first show existence in item . By Proposition 3.10 of (Choi and Wolfer| [2025)), we have
the standard minimax inequalities (S, B) > V(S,B) > V(S,B). We can also establish a lower bound
for V by restricting Nature’s strategy space from all probability measures P(B) to the simplex of finite
measures S,,:

V=V(S,DB) = i D% (P dpP
V= V(8.5) = mux min [ DR (PIQu(aP)

Vv

n
v{lrle%x énelg 22:1 w; KL( z||Q)

n
™ m 7(5.7') —
Inax Z;wiDKL(Pi” Qi P7) =7,

where the second last equality comes from Lemma and the final equality comes from . We have
thus shown the chain of inequalities v > V' > V > v, which enforces equality throughout. This implies
V =V, confirming that the mixed-strategy Nash equilibrium exists.

Ttem follows from item . At the mixed-strategy Nash equilibrium, the pair of optimal strategies
(Q*, u*) is composed of Nature’s optimal strategy p*, which is represented by the optimal weight vector
w* € S, and the probabilist’s optimal pure strategy Q* € F. Nature’s strategy w* is the solution to the
dual maximization problem as in item of Theorem identifying the “worst-case” mixture in 5. In
response to this specific mixture, the probabilist’s unique best response Q* is the information projection
of the corresponding weighted average model P(w*) onto the set of factorizable F, which is explicitly
given by Q* = ®;7L:1P(W*)(Sf). O
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11 A projected subgradient algorithm

From Theorem since problems and are equivalent (item )7 hence by item , it suffices

to solving the following convex minimization problem:

in  h(w), (54)
where h(w) = — 37" | w;DE; (Pi|| @, P(w)5¥) is convex from item (). We now compute a sub-

gradient of h, through which we aim to propose a projected subgradient algorithm with theoretical
guarantee.

Theorem 11.1 (Subgradient of h and an upper bound of its [?-norm). A subgradient of h at v € S,, is
given by g =g(v) = (g1,...,9n) € R™, where for all i € [n], we have

9i = 9i(v) = Digp,(Pu]| 2y P(v)) — Dy (Pi]| @y P(v)V).

The subgradient g satisfies that, for all w,v € S,
n
h(w) > h(v)+ > gi- (wi — ;).
i=1

Moreover, the I2-norm of g(v) is bounded above by

2
< Pi(z,y)
leglz => g7 <n (I/’VI sup Pi(z,y)In — = B.
=1

veS,; i€n]; Pi(z,y)>0 ®?:1P<v)(sk)($7y)

Proof. By the Pythagorean identity (Lemma , we have

n

> wiDi (P @, P(w)9)) <3~ wi Dy (]| @, P(v) V)
=1 =1
for any w,v € §,,. Hence,

h(w) = h(v) = = 3w D (P @y P(w)59) + 3" v, Dy (P @, P(v)©+)
i=1 i=1
— " (wi — vi) Dy (Py]| @7y P(v) ()

i

v
Il

n
(wi — i) Dy, (Pif| @y P(v) W) + Z(wz — v;) Dip(Pa| @7, P(v)54)

i=1

I

Il
_

1
n

= (wi —vi)g;,
i=1

where the second last equation holds because w,v € S,,, and hence Y. | (w; — v;) = 0.
We proceed to prove the upper bound on the I2-norm. We first show the upper bound of the KL
divergence term:

R P(v) 56 (z,y)

Dy, (P @y P(v)5R)) = > () Y Pi(x,y) In
zeX yeX

Py(z, B
< x| sup Pi(z,y)In Dl g) Vo
veESy; i€[n]; Pi(z,y)>0 ?:1P(V)( k)(xvy) n

and then we have

lel3 =" g7 < > max { D (Pull @, P(v)S9)2, Dy (B @y P(v)S4))2}
i=1 =1
BQ
< nmax Dy (Pl @ Pv)*)? <noy [T = B
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Inspired by Algorithm 1 of (Choi and Wolfer] |2025)), we propose a projected subgradient algorithm
to solve problem . In Algorithm [5} we conduct the projected subgradient algorithm for ¢ iterations.
At each iteration, we first update the weight parameters via subgradient,

v = w1 _ g (w(D),

where 1 > 0 is the stepsize of the algorithm while we take g as in Theorem the subgradient of h.
In the second step, the updated weight v(¥) is to be projected onto the n-probability-simplex S, i.e.

w(®) = argmin |w — v? |2,
weS,
which can be accomplished by existing projection algorithms onto a simplex (see e.g. (Condat| 2016))).
Note that the subgradient algorithm is not a descent algorithm, hence the monotonicity of A(w) among
different iterations is not guaranteed, see Section [I3.1] for examples.

Algorithm 5 A projected subgradient algorithm to solve problem

Require: Initial weight value w(® € S,,, set {P;}7,, target distribution , stepsize 1 > 0, and number
of iterations ¢
1: fori=1tot do

2: v wl=b _p. g(w(_i_l)) > Update via subgradient descent

3wl argmin |w — v |3 > Project onto S,
weSy,

4: end for

t

5: Output: The sequence (w(¥)._

The rest of the section is devoted to providing a theoretical guarantee for Algorithm [5] We first prove
an upper bound of Algorithm [5]

Theorem 11.2 (Upper bound of Algorithm ' Consider Algorithm @ with its outputs (w®)i_,, we

have
- n nB
h(w') — h(w* —
(W)~ h(w) < 5+
where W = %Zﬁ:l w( and w* is the optimal solution to problem , Furthermore, if we choose
constant stepsize 1 = /57, we have
B
h(W") — h(w*) < ”7

Proof. For all i € [[t], due to projection, we have
[+ — w5 < v — w5 = [w® — - g(w®) — w3
= [w® = w* |3 + n*llg(w)|* — 2ng(w)(w — w7)
< w® — w3+ n*B — 2ng(w) (W — w*),

where the last inequality come from the upper bound in Theorem We then apply the definition of
subgradient g in Theorem and it leads to

h(w) — h(w*) < g(w) - (Wl — w)
<1 (Hw(i) ~ w2 = w D w2 ) n @
= 2 2 2
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We then take summation on 7 from 1 to ¢ and obtain

, 1 Bt
D () hiw)) < o (Il = we [ — wD —w ) +
=1
1 ; Bt Bt
< gollw® — w3+ T < s T
2n 2 2n 2

where the last inequality holds because w(®, w* € S,,. From the convexity of h, we have

t\ & =t | 2

hw) — h(w) < 1 (Z(h(w@) - h(w*))) <2 1B

By AM-GM inequality, the right hand side is minimized when we choose stepsize n = |/%;, we then

obtain
h(@') — h(w*) < 1/?.

We proceed to discuss the convergence rate of Algorithm[5| We define the m-weighted total variation
distance between ) and P as

O

Di(PIQ) =5 3 7@ Play) ~ Q)

z,yeX
and show the convergence rate of Algorithm

Theorem 11.3 (Convergence rate of Algorithm. Consider Algorithm@ and its outputs (w)!_,, and

the stepsize is chosen to be n = /5, we have

us m D o m * 1
Dy (@4, P(W) 59| @, P(w*)H) = 0 (\ﬁ) .

Proof. From the convexity of KL divergence D (-||-) and Equation 3.25 of (Csiszar}, 1972)), we have a
constant C such that

Dy (&7 P(W) || @, P(w") V)

<C (waDEL(BH @p_, P(w*)Sx)) — ZWED{QL(RH ., p(w(i))(sk))>
i=1 2

< € (bms DRa (P s Pw) ) + ()

= C(h(w') — h(w*)) =0 (2) )

where the second last equality comes from the complementary slackness introduced in item of Theo-

rem W, and the last equality comes from Theorem as we choose the stepsize n = /5;. O

Remark 11.4. Theorem and Theorem establish the theoretical guarantee of Algorithm [5
through the averaged output W'. However, in numerical experiments, we choose arg min, e h(w(i))
as the result for practical purpose, see Section [13.1]

12 A max-min-max submodular optimization problem and a
two-layer subgradient-greedy algorithm

Recall that in earlier sections we consider the minimax problem and investigate its implications in
the two-person game between Nature and probabilist. As the set F(S) depends on the choice of the
partition S, in this section we consider a max-min-max optimization problem of the form

i D, (P dpP).
e 328,25 PRu(PIQIMAP)
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In words, we seek to find an optimal partition the maximizes the minimal worst-case information loss.
We write

f(8,w) szDKL (Pil| @y P(w))), (55)
i=1
and from the mixed-strategy Nash equilibrium (item (1f) of Theorem 7 we can denote the inner part

as

F(8.w°(8) = min max / Dy (P|Q)u(dP)

maXZwleL(PH@J 1 Pw)3), S € (m+ 1)l

weSy, i—1
= waDfQL(PiH @y P(w*)5)), S € (m+ 1)l
=1

—Zw*DKL P27 P(w™) ) @ P(w)—=we®)) 8 e mld,

i=1

where we write
*

w* = w*(S) = arg max f(S,w).
weS,

We furthermore choose the ground set V € ml? and cardinality constraint I, and instead consider
the max-min-max optimization problem

f(S,w*(8)). (56)

max
S=V; [supp(S)[<i

We then investigate the following map for fixed w € S,, through the lens of submodularity:
mll 58— f(8) = ZwlDKL (Pill(@75 P(w) ) @ P(w)mep(), (57)

Lemma 12.1. The map is orthant submodular.

Proof. We shall prove that A, ; f(S) > A, ; f(T) from the definition of orthant submodularity, where we
choose S X T and e ¢ supp(T).

- —(Su{e —(S; —(—supp(S)U{e —(—supp(S

=1

_ Z ( (T U{e })) H(ﬁ(Tj)) _i_H(ﬁ(—supp(T)U{e})) _ H(ﬁ(—supp(T))))
(S;U{e}) —(55) —(T;U{e}) —-(T5)
(H<P )= HP)) = (PP~ HPT))]

_E {(H(ﬁ(fsupp(T))) _ H(F(fsupp(T)u{e}))) _ (H(P(fsupp(S))) _ H(ﬁ(fsupp(s)u{e})))} .

Since the map S +— H(F(S)) is submodular (see item [4f of Theorem D and S < T, then we have
5(SiU{e}) —-(55) 5 (T5U{e}) —-(T5)
(P~ H @)~ (HEE) — B PP 20,
(H(P(*SUPP(T))) _ H(ﬁ(*suPP(T)U{e}))) _ (H(ﬁ(*supp(s))) _ H(?(*SUPP(S)U{G}))> > 0.

Therefore A, ; f(S) — A¢ ; f(T) > 0 and hence the map is orthant submodular. O
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In view of Theorem since the map is orthant submodular, then for any 8 = (w) € R, if
S <XV, we have the following monotonically non-decreasing (m — 1)-submodular function:

m—1
g(S,W) = f(s) _B+ Z Z(f(vh'"a‘/jr"av:m—l)) _f(V17'"7‘/_7\{6}7"'avm—1))
j=1 e€S;
n m-—1
= =) =Vi\{e —(e x 5(—supp(V)\{e}), 55(—supp(V —(e
— [(S) - B+ w; [DKL(P( )HP( \{e}) ®P( )) _DKL(P( pp(V)\{ })HP( pp(V)) ®P( ))}
i=1 j=1 e€S;
m—1
j=1 e€S;
(58)
where the last equality comes from the fact that w € S,,.
We also obtain the following modular function:
m—1
—(V;) 5(Vi\{e —(e ~ 5(—supp(V)\{e —(—supp(V —(e
j=1 e€S;
(59)
where we take
m—1
8= [ (w)(Tswp(VIUAeh)y o f(P(w)(©) (60)
Jj=1 EESJ'

and write ¢(S,w) < C to ensure that 0 < ¢ < C. Therefore, for fixed w € S,
f(va) = g(S,W) - C(S7W),

where f can be written as the difference between a (m — 1)-submodular function and a non-negative
modular function.

Remark 12.2. If we consider the optimization problem with fited w € Sy, i.e.,

f(S) = f(va)v

max
S=V; [supp(S)|<!

we can apply the generalized distorted greedy algorithm (Algorithm @ with g as in , c as in ,
and B as in to solve the problem. Furthermore, Theorem gives the following lower bound:

f(S;,w)>(1—e1)g(OPT,w) — ¢(OPT, w),
where S; = (Si1, ..., S1,m—1) is the final output of Algorz'thm@ and OPT = arg maxg v, supp(s)|<t f(S)-

We propose Algorithm |§| to solve problem . Algorithm |§| is a two-layer subgradient-greedy al-
gorithm, which combines the outer generalized distorted greedy algorithm (Algorithm [3)) and the inner
projected subgradient algorithm (Algorithm . Specifically, we conduct totally ! rounds of general-
ized distorted greedy algorithm: at the i-th round, we first fix S; and apply the projected subgra-
dient algorithm on fixed S; for K iterations to maximize the objective function f(S;,-); we then fix
Wit1 = Zk 1 wz +1 and perform generalized distorted greedy algorithm to obtain S;;;. We proceed to
state and prove a lower bound of Algorithm [6]in Theorem [12.3

Theorem 12.3 (Lower bound of Algorithm E[) Algorithm |0 provides the following lower bound:

1
f(S;,wy) > %Z a;g(OPT(wW;),w;) — ¢(OPT(W,;),w;)] — O (l ( 7”;? + C))

where (S, W) is the output of Algom'thm@ o =(1—-7)"" and

OPT(w)=  argmax f(S,w).
S=V; [supp(S)|<i
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Algorithm 6 A two-layer subgradient-greedy algorithm to solve problem
Require: f asin ; g asin ; casin ; subgradient g as in Theorem cardinality constraint

[; partition of ground set V.= (Vq,...,V,,_1) € mlal; inner iteration number K
1: Initialize Sg = (So.1,...,S0,m—1) + 0 and w(()K) = (%, o %)

2: Compute bound B as in Theorem and stepsize = /g%
3: fori=0tol—1do

D )
5 for k=0to K —1do
. B s b
6: v wih —n-g(S,wi)
7 WE_]T_?) + argmin |w — v||3
weS,
end for "
_ K
9: Wil <& % Zk:l Wit

T I—(i+1 _ _
10: (j*,e*) « arg max {(1 — %) (+1) Ac;jg(Si, Wiy1) — c({e}7wi+1)}
JE€lm—1]; e€V;\S;,;

11: if (1 - %)l_(H_l) Ae*7j*g(Si,Wi+1) - C({e*},Wi+1) > (0 then

12: Si-i-l,]'* — Siﬂ'* U {8*}
13: else

14: Si+1,j* «— Si,j*

15: end if

16: for k € [m—1], k# j* do
17: Siv1k < Sik

18: end for

19: end for

20: Output: S; and w;

Proof. We define the distorted objective function ®; : mld x S, — R to be
(I)Z(S,WZ) = Ozig(S,Wi) — C(S,Wi) > aif(S,Wi) - C(S,Wi),

where the inequality comes from the fact that 0 < a; < 1.
We look into the difference of the distorted objective function

Di1(Sit1, Wit1) — Pi(Si, Wi) = [P 1(Si1, Wir1) — Pi(Si, Wig1)] — [i(Si, Wig1) — $4(Si, Wy)],
where the first term is the gain in the distorted greedy algorithm, and the second term is the weight
update error.

We first refer to the proof of Theorem [2.16] and state the lower bound of the gain in the distorted
greedy part

D 1(Sit1, Wir1) — Pi(Ss, Wit1) > —(i419(OPT(Wit1), Wit1) — ¢c(OPT(Wit1), Wit1)).

o~ =

We then analyze the weight update error term. From Theorem [11.2] we have

F(S1,w"(80))  F(81,%m) <4/ ¥m € 1]
hence the lower bound of the weight update error is
Di(Si, Wir1) — ©i(Si, Wi) = ;i (f(Si, Wi1) — [(Si; Wi)) — (c(Si, Wig1) — ¢(Si, Wi))
> —a|| f(Si; Wit1) — f(Si, Wy)|| = C
2 —ai([[f(Si, w*(8i)) = f(Si, Wira) | + 1 (Ss, w*(Ss)) — f(Si, wi)|) = C
nB

> —2a;y/ == — C.
Z «Q K

Since ®o(Sp) > 0, then

-1
f(S1,W1) =y - (S, Wi) — c(Si, W) > Y [Pig1(Siv1) — i(Si)],

i

I
=
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hence

-1 -1
FSLW) =D [®ig1(Siv1, Wig1) — Pi(Si, Wir1)] + Y _[®i(Si, Wir1) — i(S;, W,)]
11701 - - 1;0 =
> Z[aig(OPT(Wi)7wi) — ¢(OPT(W;),w;)] — 2 ¥d Z a; —IC

s
Il
_
o
I
<}

1
l
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13 Numerical experiments of Part

We conduct a series of numerical experiments to validate the theoretical framework and evaluate the
performance of the proposed algorithms on the Curie-Weiss model and the Bernoulli-Laplace level model
(see Section for details). The experiments are designed to demonstrate the performance of the
projected subgradient algorithm (Algorithm to solve problem and the two-layer subgradient-
greedy algorithm (Algorithm @ to solve problem .

13.1 Numerical experiments of Algorithm

We apply the projected subgradient algorithm (Algorithm [5)) to solve the minimization problem
for both the Curie-Weiss and Bernoulli-Laplace level models. We start with a low-dimensional example.
For both settings, we construct a 5-dimensional Markov chain with w-stationary transition probability
matrix P on state space X = {0,1}5. We then construct a family of n = 5 transition matrices with
B = {P,P?, P* P8 P!} which ensures that all matrices in B share the same stationary distribution
m. We partition the state space into S = {S1,52,53} (m = 3) such that S; = {1,2}, Se = {3,5}, and
Ss = {4}.

We initialize the algorithm with uniform weights w(®) = (1/5,...,1/5). The step size is chosen
according to the theoretical guarantee from Theorem m, n= \/th , where the subgradient norm bound
B is estimated once at the beginning of the algorithm. The number of iterations until convergence is
theoretically determined by ¢t = fi—f}, but ¢ would be large with large B and small €. Therefore for
practical purpose, we only run a small number of iterations for demonstration. The trajectory plots of
the projected subgradient algorithm and the evolution of weights of both models are shown in Figure
We also summarize the weights w € S,, and the corresponding objective value h(w) in Table [20| for both
Curie-Weiss and Bernoulli-Laplace models. We state and compare the optimal w during the optimization

process arg min;ep,g h(w(?), the averaged value during the iterations W', initial uniform w(®), extreme

weight wey such that only wey o = 1, and the final weight w(® of the iterations.

2The code is available at: https://github.com/zheyuanlai/subgradient-greedy.
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Curie-Weiss Model: Trajectory Plot of h(w)

Bernoulli-Laplace Level Model: Trajectory Plot of h(w)

-0.45 -0.35
~0.50 -0.40
z z
< -0.55 £ -0.45
-0.60 -0.50
-0.65 -0.55
0 50 100 150 200 250 300 0 25 50 75 100 125 150 175 200
Iteration Iteration
Weights Evolution Weights Evolution
1.0
0.6 08
— —wm
£ o4 — W £ 06 —w,
4%’ w3 % w3
= wa = 04 A
02 | eeu, s s
= 02 /\
0.0 \““*“‘,,N 00

o

50 100 150

Iteration

(a) Curie-Weiss model

300

0

25 50 75 100

Iteration

125

150

175

(b) Bernoulli-Laplace level model

w, h(w) / Model

Curie-Weiss

Bernoulli-Laplace

Figure 11: Convergence of the projected subgradient algorithm for both models (d = 5).

arg min, g,y A(w™) | (0.71,0.00,0.00,0.08,0.21)  (1.00,0.00,0.00,0.00, 0.00)
w (0.60,0.08,0.02,0.11,0.19)  (0.85,0.11,0.02,0.01,0.01)
w(® (0.20, 0.20,0.20,0.20,0.20)  (0.20, 0.20,0.20,0.20, 0.20)
Wox (1.00, 0.00, 0.00,0.00,0.00) ~ (1.00, 0.00,0.00,0.00, 0.00)
w® (0.71,0.00, 0.00,0.08,0.21)  (1.00,0.00, 0.00, 0.00,0.00)
min; g h(w®) —0.65 —0.55
h(W") —0.62 —-0.51
h(w(®) —0.39 —0.31
h(Wex) —0.48 —0.55
h(w®) —0.65 —0.55

Table 20: Comparison of h(w) values for different weight choices (d = 5)

For the Curie-Weiss model (Figure 7 the algorithm demonstrates rapid initial decrease, after
the first 50 iterations, the objective value decreases with a slower rate, which totally converges after 250
iterations. The weights converge to a sparse distribution, with the final weight vector being approximately
wt) = (0.71,0.00,0.00,0.08,0.21). This indicates that the final solution is approximately a convex
combination of the base transition matrix P and the transition matrix with the highest mixing rate P9,
while the intermediate transition matrices have zero weights.

The Bernoulli-Laplace level model (Figure exhibits similar convergence behavior: the objective
value decreases fast in the first 30 steps, then it moves slowly until fully converged after 150 iterations.
The final weight vector converges to w(*) (1.00,0.00,0.00,0.00,0.00), indicating that the optimal
solution is entirely the base transition matrix P.

We then conduct experiments associated with the family of transition matrices including lazy Markov
chain (see e.g. (Shen et al., 2014)) for background). Precisely, we choose

1 3_1 3 1
={P,P P ~I+-P-(I+P),~1+-P
s={rrptgre dngae i e,
where one readily verifies that all the transition matrices in family B share the same stationary distri-
bution 7. The trajectory plots are shown in Figure and we also summarize the objective values of
different w’s in Table 21l
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Curie-Weiss Model (d=5): Trajectory Plot of h(w) Bernoulli-Laplace Level Model (d=5): Trajectory Plot of h(w)

-0.24 0725
-0.26 ~0.750
. 0775
B B
=-0.28 £ -0.800
-0.825
-0.30
-0.850
-0.32 =
0 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Iteration
Weights Evolution Weights Evolution
0.4 0.4
— w1 wy
_03 —w _03 —_—m
= ws = ws
2o2 wa 202 Ws
Ws < Ws
01 \ — Ws 01 \‘“..“ LT W

o

200 400 600

Iteration

800 1000

o

200 400 600

Iteration

800 1000

(a) Curie-Weiss model (b) Bernoulli-Laplace level model

Figure 12: Trajectory plot of the projected subgradient algorithm for both models (incl. lazy chains).

w, h(w) / Model

Curie-Weiss

Bernoulli-Laplace

arg min, ¢y h(w®)
<5t

0.35,0.00, 0.22,0.00, 0.00, 0.44

0.33,0.10,0.00, 0.03,0.09, 0.45

( ) ( )
W (0.32,0.03,0.20,0.02,0.04,0.40)  (0.26,0.11,0.03,0.08, 0.13, 0.39)
w(® (0.17,0.17,0.17,0.17,0.17,0.17) ~ (0.17,0.17,0.17,0.17,0.17,0.17)
Wex (1.00, 0.00, 0.00,0.00, 0.00, 0.00) ~ (1.00, 0.00, 0.00,0.00, 0.00, 0.00)
wt) (0.35,0.00, 0.20,0.00, 0.00, 0.45)  (0.33,0.10, 0.00,0.03, 0.09, 0.45)
min;epg h(w®) —0.32 —0.87
h(w!) —0.34 —-0.31
h(w(®) —0.28 —0.29
h(Wex) —-0.29 —0.55
h(w®) —0.31 —0.87

Table 21: Comparison of h(w) values for different weight choices (incl. lazy chains)

For the Curie-Weiss model (Figure , the algorithm exhibits an initial decrease followed by a slight
increase towards convergence. Since the projected subgradient algorithm (Algorithm [5)) is not a descent
algorithm, then it is not guaranteed that h shows a non-decreasing trajectory. The final objective value
reaches approximately —0.311, while the final weight learned by the algorithm is

w® = (0.35, 0.00, 0.20, 0.00 , 0.00 , 0.45 )
NN N ~ ~
P pz  p+ 1143p L(I+P) SI+iP

which is sparse and concentrates on three extremes: the base chain P, the most accelerated P*, and
the “laziest” member %I + iP. Intermediate options (P? and the moderately lazy mixtures) receive
zero weight. This indicates that, within this family on the Curie-Weiss chain, the best trade-off for the
minimax optimization is achieved by combining the slowest %I + iP and fastest P* directions with the
base chain P.

For the Bernoulli-Laplace level model (Figure , we similarly observe rapid early descent and a
stable plateau thereafter as in Figure The final objective is approximately —0.866 though has not
reached convergence given the limited computational budget. The final weight is

w® = (0.33, 0.10, 0.00, 0.03 , 0.09 , 0.45 )
N NN N ~~ ~
P pz p+ 1143p L(+pP) 3I+iP
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which gives majority of weight on the base transition matrix P and the transition matrix associated with
the most “lazy” chain %I + iP . This indicates that, within this family on the Bernoulli-Laplace chains,
the best trade-off for the minimax optimization is achieved by combining the slowest direction %I + iP
and P? direction with the base chain P.

We proceed to simulate on higher-dimensional Markov chains associated with both models, with re-
sults presented in Figure For these experiments, the family of transition matrices is B = { P, P2, P*, P®, P16}
(n = 5). For the Bernoulli-Laplace level model, we conduct experiments on d = 10, while for the Curie-
Weiss model, we only choose d = 8 in order to avoid numerical overflow. We also summarize the objective
values of different w’s in Table

Curie-Weiss Model (d=8): Trajectory Plot of h(w) Bernoulli-Laplace Level Model (d=10): Trajectory Plot of h(w)

-0.4
-0.5
-0.5
Z-06 z
~ E=
-0.6
-0.7
-0.7
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Iteration Iteration
Weights Evolution Weights Evolution
1.0
0.6
0.8
—— w1 — "
= 0.4 — Wy =06 —_—w;
'g’ w3 'g’ w3
= Wa 2 04 Wy
0.2 [==og Ws Ws
\\ 0.2
0.0 0.0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Iteration Iteration

(a) Curie-Weiss model (d = 8) (b) Bernoulli-Laplace level model (d = 10)

Figure 13: Trajectory plots of the projected subgradient algorithm for both models (higher dimension).

Curie-Weiss

w, h(w) / Model

Bernoulli-Laplace

arg min, ¢y h(w®)
wt

w©®

WEX

w®

(0.64,0.04, 0.00, 0.00, 0.32)
(0.55,0.13,0.01, 0.04, 0.27)
(0.20,0.20, 0.20, 0.20, 0.20)
(1.00,0.00, 0.00, 0.00, 0.00)
(0.64,0.04, 0.00, 0.00, 0.32)

(1.00, 0.00, 0.00, 0.00, 0.00)
(0.83,0.14,0.02,0.01,0.01)
(0.20, 0.20, 0.20, 0.20, 0.20)
(1.00, 0.00, 0.00, 0.00, 0.00)
(1.00, 0.00, 0.00, 0.00, 0.00)

min, ey h(w®)
h(w")

h(w<0))
h(Wex)
h(w(t))

—0.76
—0.69
—0.44
—0.27
—0.76

-0.73
—0.67
—0.38
—-0.73
-0.73

Table 22: Comparison of h(w) values for different weight choices (higher dimension)

The experiments associated with the Bernoulli-Laplace level model (Figure exhibit similar trends
as the 5-dimensional example (Figure , as the objective value h(w) decreases fast at start and
then converges slower towards w(*) = (1.00, 0.00,0.00,0.00,0.00). For the Curie-Weiss model, the 8-
dimensional example (Figure shows similar convergence trend as the 5-dimensional example (Fig-
ure [11a)). However, as the B in Theorem is large, we do not obtain the exact converging w* with
the same computational budget as the Bernoulli-Laplace model.
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13.2 Numerical experiments of Algorithm [6]

We apply Algorithm [6] to solve the maximization problem on both the Curie-Weiss and Bernoulli-
Laplace models. For both models, we construct a 5-dimensional Markov chain with state space X =
{0,1}5 and m-stationary transition matrix P. We then construct B = {P, P2, P* P8 P16} so that all
matrices in B share the same stationary distribution 7. We choose the ground set to be V. = {V;, 15}
such that V; = {1,2} and V2 = {3,5}. For the inner part, we execute K = 30 iterations of the projected
subgradient algorithm. We summarize the running results of both models in Figure
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Figure 14: Trajectory plot of Algorithm |§| for both models (d = 5).

For the Curie-Weiss model (Figure , the final weight is W; = (0.72,0.00, 0.00, 0.00, 0.28), and the
final partition set is S; = {51, 52}, where S; = {2} and So = {3,5}. It shows that after the final round
of Algorithm [ the resultant weight vector of the max-min-max optimization problem is attained by
combining the base transition matrix P and the transition matrix with the highest mixing rate PS.

For the Bernoulli-Laplace level model (Figure, the final weight is w; = (0.97,0.03, 0.00, 0.00, 0.00),
and the final partition set is S; = {51, S2}, where S; = {2} and So = {3,5}. It shows that after the final
round of Algorithm [6] the convex hull of family B concentrates on the base transition matrix P.

Similar to the numerical experiments in Section we then look into the experiments associated
with the family of transition matrices including lazy random walk, precisely, we choose

1. 3_1 3 1
=P P’ Pt _[+P-(I+P),-I+-P}.
s={rrptire Sngae )i r)

We summarize the results in Figure
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Figure 15: Trajectory plot of Algorithm |§| for both models (incl. lazy matrices).

For the Curie-Weiss model (Figure [15a)), the final weight is

W, = (0.37, 0.00, 0.33, 0.00 , 0.00 ., 0.30 )
p P2 Pt 1l543p layp) 214lp

and the final partition set is S; = {S1, S2}, where S; = {2} and Sy = {3,5}. The final weight vector W,
concentrates on three modes, which indicates that the final weight is obtained by combining the slowest
%I + %P and the fastest P* directions with the base chain P.

For the Bernoulli-Laplace level model (Figure , the final weight is

W) = (0.507 0.00, 0.00, 0.00 , 0.00 , 0.50 )
= N =~ ~~ ~
P P2 PY 43P §(I+P) {I+3P

and the final partition set is S; = V, which means that Algorithm [6] selects the whole ground set as
the subset. The final output W; concentrates on two matrices, which indicates that the final result is
obtained by averaging the chain with the slowest mixing rate %I + iP and the base chain P.

We proceed to analyze higher-dimensional cases of both models with d = 8 and cardinality constraint
[ =7, and choose the ground set as V = {V1,V2}, where V; = {1,2,3,4} and V, = {5,6,7}. We choose
the family of the transition probability matrices to be B = {P, P?, P4, P8, P'6}. For the inner part, we
execute K = 150 iterations of the projected subgradient algorithm. The trajectory plots of both models
are summarized in Figure
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Figure 16: Trajectory plot of Algorithm |§| for both models (d = 8).

For the Curie-Weiss model (Figure , the objective value f(S;,W;) is not monotonically non-
decreasing, as both the generalized distorted greedy algorithm (Algorithm [3|) and the projected subgra-
dient algorithm (Algorithm [5)) do not guarantee monotonicity. The final partition set is S; = V, which
means that the algorithm selects the ground set as the subset. After the final round of Algorithm [ the
final weight is w; = (0.70, 0.00, 0.00, 0.00, 0.30), which concentrates on the base transition matrix P and
the matrix with fastest mixing P°.

For the Bernoulli-Laplace level model (Figure7 the final weight is w; = (1.00, 0.00, 0.00, 0.00, 0.00)
and the final partition set is S; = {51, S2}, where S; = {1,2,3} and So = {5,6,7}. It shows that after
the final round of Algorithm [6 the weight of the max-min-max optimization reaches closely to the base
transition matrix P.
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