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Introduction

e Setup: d-dimensional Markov chains on product spaces: 2 = .2 () x ... x 2@

e Subset selection: Find a lower-dimensional coordinate subset that preserves
maximal information or stays closest to equilibrium

e Partition selection: Find an optimal partition of coordinates that the factorized

chain is closest to the original chain

Preliminaries

Information theory of Markov chains (Choi et al., 2024)

e Discrete time, discrete state, m-stationary Markov chain

e |eave-S-out transition matrix: P,(I_S)(x(_s),y(_s)) (Keep-S-in: Pj(rS)(x(S),y(S)))
e Shannon's entropy: H() = — Y ,.c 2 ®(x)In7(x)

e Entropy rate of P: H(P) = —Y ,c2 Yye2 T(x)P(x,y)InP(x,y)

o KL divergence from L to M: Dy (M||L) =Y c2 T(x)Lyea M(x,y) hlﬂf((f’yy))

Submodularity and k-submodularity

e Submodularity: “diminishing gains" f(S)+ f(T) > f(SUT)+ f(SNT)

e k-submodularity: generalization to multivariable f(S)+ f(T) > f(SUT)+ f(SNT)
® k-submodularity = pairwise monotonicity + orthant submodularity
® pairwise monotonicity: A, ;f(S)+A. ;if(S) >0
e orthant submodularity: A.;f(S) > A.if(T),S=XT
e Sum of submodular mono. incr. = k-submodular
e T[ransformations into monotonicity:

e Non-monotone submodular = Monotone submodular minus modular

e Orthant submodular = k-submodular minus modular
e Submodular structure in Markov chains (Choi et al., 2024)

o S— H(PY®) is submodular but non-monotone

o S+ Dk (P||PY) @ P(=5)) is submodular and symmetric but non-monotone

Submodular optimization under cardinality constraint
o Greedy algorithm (Nemhauser et al., 1978):

e (1 —e !)-approximation guarantee for monotone submodular objective
® no theoretical guarantee for non-monotone submodular objective

e Distorted greedy algorithm (Harshaw et al., 2019): theoretical lower bound for

maximizing a monotone submodular function minus a modular function

Algorithm 2 Distorted greedy algorithm for maximizing the difference between a mono-
tonically non-decreasing submodular function and a modular function

Require: monotonically non-decreasing submodular g with g(@)) > 0, non-negative modular ¢, cardinal-
ity m, ground set U
1: Initialize Sy + 0
2: fori=0tom —1do

3: e; < argmax { (1 — %)m_(wl) (g(S; U{e}) —g(S;)) — C({e})}

eclU

e if (1- )" (s ufe}) — 9(S) — c{ei}) > 0 then
5: Sit1 + 5; U {81}

6: else

7 Sg;+1 — S;

8: end if

9: end for

10: Output: S,,.

e Generalized distorted greedy algorithm (this paper): theoretical lower bound for

maximizing a k-submodular function minus a modular function

Algorithm 3 Generalized distorted greedy algorithm for maximizing the difference of k-
submodular function and a modular function

Require: k-submodular monotonically non-decreasing g with g()) > 0, non-negative modular ¢ with
¢(P) = 0, cardinality m, ground set U, V = (Vq,...,V;) € (k+1)Y.
1: Initialize So = (S0.1,...,50k) <+ 0
2: fori=0tom—1do

vy m—(1+1
3: (j*,e*) ¢ argmax {(1—%) ( }Aejg( -)—c({e})}
jEHk]],EEL'E‘\Si,j

g if (1= L)AL Lg(Si) — e({e*}) > 0 then
5: S¢+1}j* — S@,,j* U {e*}

6: else

T Sg;_}_l}j* — Sg;jj*

8: end if

9: for | # 3% do

10: Sit1,1  Sil

11: end for

12: end for

13: Output: S,, = (Sm.1s-.-,mk)-

Subset selection

Submodular maximization of entropy rate

e Motivation: find the coordinate subset with the most information

e Problem setup: maX,S,SmH(P(S)), non-monotone submodular maximization
e Apply distorted greedy algorithm with theoretical lower bound:
e product form m: S — H(P®) = H(zO K PY)) — H(x®)

e general m: monotone submodular g and modular ¢

g(8)=H(PY)—B+Y (HP")—H(P))

ecS

=—B+) (D (P||P')

ecS

d
B<—Y log| 2
=1

Supermodular minimization of distance to stationarity

e Motivation: find the coordinate subset that is closest to equilibrium = design of

efficient discrete-space MCMC samplers
e Problem setup: maxg <, — Dk (P®TIV®)), submodular with product form 7
e Apply distorted greedy algorithm with theoretical lower bound
§(8) = —Dxr (P [I¥) + Y (Dke. (P||P') 0 PU) 4 Dy (P TT))

ecS

c(S) = Y (Dxu(P|[P') @ P"¢)) + Dy (P TT)))

ecS

Partition selection

k-submodular maximization of distance to factorizability

e Motivation: select a coordinate partition S to determine a factorized chain being the
“furthest” from the original chain P in terms of KL divergence
e Problem setup: maxg<v: |supp(s)|<m.f(S) = DKL(PHP(SI) Q...Q P ®P(_U§=15i))

orthant submodular but not pairwise monotone

e Apply generalized distorted greedy algorithm with guaranteed lower bound

k
8S)=F®)-B+Y, Y |Diw(P

i=1ecsS;

Vi) Hp(Vi\{e}) ®p(€))

— Dy (P(supp(V)\{e}) | p(—supp(V)) p(e))}
pvi) ||p(Vi\{€}) ®p(€))
— Dy (P(supp(V)\{e}) | p(—supp(V)) p<e>)}

ﬁ < — i Z (H(P(SUPP(V)\{e})) _|_H(P(e)))

i=1ecV;

Numerical experiments

e d-dimensional Markov chain associated with the Curie-Weiss model and the

Bernoulli-Laplace level model
e Toy experiment on MCMC with Curie-Weiss model

e Experiments on the algorithms introduced throughout the paper
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