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Introduction
• Setup: d-dimensional Markov chains on product spaces: X = X (1)× . . .×X (d)

• Subset selection: Find a lower-dimensional coordinate subset that preserves
maximal information or stays closest to equilibrium

• Partition selection: Find an optimal partition of coordinates that the factorized
chain is closest to the original chain

Preliminaries

Information theory of Markov chains (Choi et al., 2024)
• Discrete time, discrete state, π-stationary Markov chain
• Leave-S-out transition matrix: P(−S)

π (x(−S),y(−S)) (Keep-S-in: P(S)
π (x(S),y(S)))

• Shannon’s entropy: H(π) =−∑x∈X π(x) lnπ(x)
• Entropy rate of P: H(P) =−∑x∈X ∑y∈X π(x)P(x,y) lnP(x,y)
• KL divergence from L to M: Dπ

KL(M∥L) = ∑x∈X π(x)∑y∈X M(x,y) ln M(x,y)
L(x,y)

Submodularity and k-submodularity
• Submodularity: “diminishing gains” f (S)+ f (T )≥ f (S∪T )+ f (S∩T )
• k-submodularity: generalization to multivariable f (S)+ f (T)≥ f (S⊔T)+ f (S⊓T)
• k-submodularity = pairwise monotonicity + orthant submodularity

• pairwise monotonicity: ∆e,i f (S)+∆e, j f (S)≥ 0
• orthant submodularity: ∆e,i f (S)≥ ∆e,i f (T),S ⪯ T

• Sum of submodular mono. incr. ⇒ k-submodular
• Transformations into monotonicity:

• Non-monotone submodular ⇒ Monotone submodular minus modular
• Orthant submodular ⇒ k-submodular minus modular

• Submodular structure in Markov chains (Choi et al., 2024)
• S 7→ H(P(S)) is submodular but non-monotone
• S 7→ DKL(P∥P(S)⊗P(−S)) is submodular and symmetric but non-monotone

Submodular optimization under cardinality constraint
• Greedy algorithm (Nemhauser et al., 1978):

• (1− e−1)-approximation guarantee for monotone submodular objective
• no theoretical guarantee for non-monotone submodular objective

• Distorted greedy algorithm (Harshaw et al., 2019): theoretical lower bound for
maximizing a monotone submodular function minus a modular function

• Generalized distorted greedy algorithm (this paper): theoretical lower bound for
maximizing a k-submodular function minus a modular function

Subset selection

Submodular maximization of entropy rate
• Motivation: find the coordinate subset with the most information
• Problem setup: max|S|≤m H(P(S)), non-monotone submodular maximization
• Apply distorted greedy algorithm with theoretical lower bound:

• product form π : S 7→ H(P(S)) = H(π(S)⊠P(S))−H(π(S))

• general π : monotone submodular g and modular c

g(S) = H(P(S))−β + ∑
e∈S

(H(P(−e))−H(P))

c(S) =−β + ∑
e∈S

(D(P∥P(e)⊗P(−e))−H(P(e)))

β ≤−
d

∑
i=1

log |X (i)|

Supermodular minimization of distance to stationarity
• Motivation: find the coordinate subset that is closest to equilibrium ⇒ design of

efficient discrete-space MCMC samplers
• Problem setup: max|S|≤m−DKL(P(S)∥Π(S)), submodular with product form π

• Apply distorted greedy algorithm with theoretical lower bound

g(S) =−DKL(P(S)∥Π
(S))+ ∑

e∈S
(DKL(P∥P(e)⊗P(−e))+DKL(P(e)∥Π

(e)))

c(S) = ∑
e∈S

(DKL(P∥P(e)⊗P(−e))+DKL(P(e)∥Π
(e)))

Partition selection

k-submodular maximization of distance to factorizability
• Motivation: select a coordinate partition S to determine a factorized chain being the

“furthest” from the original chain P in terms of KL divergence
• Problem setup: maxS⪯V; |supp(S)|≤m f (S) = DKL(P∥P(S1)⊗ . . .⊗P(Sk)⊗P(−∪k

i=1Si))

orthant submodular but not pairwise monotone
• Apply generalized distorted greedy algorithm with guaranteed lower bound

g(S) = f (S)−β +
k

∑
i=1

∑
e∈Si

[
DKL(P(Vi)∥P(Vi\{e})⊗P(e))

−DKL(P(−supp(V)\{e})∥P(−supp(V))⊗P(e))
]

c(S) =−β +
k

∑
i=1

∑
e∈Si

[
DKL(P(Vi)∥P(Vi\{e})⊗P(e))

−DKL(P(−supp(V)\{e})∥P(−supp(V))⊗P(e))
]

β ≤−
k

∑
i=1

∑
e∈Vi

(
H(P(−supp(V)\{e}))+H(P(e))

)

Numerical experiments

• d-dimensional Markov chain associated with the Curie–Weiss model and the
Bernoulli–Laplace level model

• Toy experiment on MCMC with Curie–Weiss model
• Experiments on the algorithms introduced throughout the paper
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