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Abstract

Complex chemical space and limited knowledge scope with biases hold immense challenge for

human scientists, yet in automated material discovery. Existing intelligent methods rely more on
numerical computation, leading to 1efficient exploration and outcomes with hard-
interpretability. To bridge this gap, we introduce a principles-inspired material discovery system
powered by language inferential multi-agent system (MAS), namely PriM. Our framework
integrates automated hypothesis generation with experimental validation in a roundtable MAS,
enabling systematic exploration while maintaining scientific rigor. Based on our framework, the
case study of nano helix material inverse design demonstrates higher property value targeting
while providing transparent reasoning pathways. This approach develops an automated-and-
transparent paradigm for automated material discovery, with broad implications for rational
design of functional materials.
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PriM 1s a principle-inspired multi-agent system that alternates hypothesis generation and
experimental validation under a central LLM-driven Planner. Before the first iteration, the
user should define the research goal and constraints through a User Proxy Agent, after that, a
Literature Agent is applied to retrieve literature insights. In each round, a Hypothesis Agent
converts the knowledge into physiochemically grounded proposals, an Experiment Agent
evaluates them 1n a high-fidelity surrogate virtual lab, an Optimizer Agent refines parameters
via Monte-Carlo Tree Search, and an Analysis Agent distils the results into knowledge, and the
Planner advances to the next round with the distilled knowledge.

Algorithm 1 PriM Framework for Materials Discovery The PriM framework is formalized in Algorithm 1,

Require: Initial knowledge Ko, initial parameter set X9 C X', con-
straint set C, maximum iteration M. Literature Agent L, Hy-
pothesis Agent I, Experiment Agent F, Optimizer Agent O,
Analysis Agent A and Planner P.
Initialize Sy = (K(], Xo, Q))
Ro =T = L(Ko)
fort =1,2,...,M do
T, =H (Rt—l)
Dy = E(Ti, X;1)
X*=0(Xe,V(Xe-1))

and Theorem 1 proves the theoretical convergence
of PriM.

Theorem 1. Let the parameter space X be compactandlet f : X —
Y be continuous. Under the update dynamics of PriM, the sequence
{f (X))}, is monotonically non-decreasing and converges to the
optimal value f(X™). Specifically,

lim [£(X,) — f(X7)| = 0.
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partial experimental conditions to allow numerical
optimization in a reduced property space, thereby
accelerating the identification of target material
structures.
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Output: Optimal parameter X € X N C such that

X* = arg max SX).

Baselines and Metrics

Apart from numerical search algorithms, we consider the following baselines:

1. Vanilla Agent: Single optimization agent with naive hypothesis generator.

2. Vanilla MAS: The full roundtable of PriM except the Hypothesis Agent.

3. AccelMat [1]: Arecent MAS for material discovery that focuses on hypothesis generation.
4. MASTER [2]: An MAS that augments MCTS with LLM-based heuristics.

Metrics:

1. Optimal material property value (real value p and proportional value p));

2. Normalized exploration rate (€); 3. Convergence iterations.
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Results and Analysis

Table 1: Comparison of PriM with Baselines Methods (mean = std)

Table 3: Hyperparameter Ablation (mean =+ std)

PriM achieves competitive material property values (i) while maintaining scientific rationality.

Method Optim. Val. (1) p (%) Exp. Rate (¢) Conv. Iter. (a) Difference in MCTS Iterations
BO [11] 1.334 + 0.07 90.7  094+0.05 848+ 12.79
DQN [26] 1.157 £ 0.17 78.6  074+0.13  247+756 : -
MCTS [5] 1102005 749 1224002 683 +2144 Setting Optim. Val. (1) (%) Exp.Rate  Conv. Iter.
Vanilla Agent 0.644 + 0.05 43.8 0.65 + 0.02 9.20 + 2.56 10 Iterations 0.85610.08 58.1 0.48+0.08 43.0+£5.4
Vanilla MAS 0.923 £+ 0.17 62.7  035+0.11 6540+ 18.91 20 Iterations 1.0860.05 73.8  0.45+0.07 85.5%8.6
AccelMat [20] 0.625 +£0.24 42.5 0.54 + 0.30 25.00 &+ 17.36 30 Iterations 1.1004+0.12 74.8 0.69+0.03 121.84+26.2
MASTER[13] 0440+012 299 039+019 1600+465 40 Iterations ~ 1.024+0.07  69.6  0.68+0.07 135.0+46.7
PriM (Ours) 1.086 + 0.05 73.8 0.45 £ 0.07 85.50 £ 8.58 50 Iterations 1.04110.10 70.7 0.46+0.08 203.4+37.2
) . (b) Difference in Optimizer
Table 1 validates the performance of PriM through
comparison with other baseline methods. Setting  Optim. Val. () p (%) Exp.Rate Conv. Iter.
' MCTS [5] 1.086+0.05 73.8 0.4540.07 85.548.6
Table 2: Component Ablation (mean =+ std) BO [11] 0.9660.05 65.7  0.621+0.04 N/A
Setting Optim. Val. () (%) Exp.Rate(e) Conv.Iter. ~ DQN [26] 0.47240.25 32.1  0.5240.08 N/A
PriM 1.086 £+ 0.05 73.8 0.45 £+ 0.07 85.50 4+ 8.58 (C) Difference in Language Model
w/o Hypothesis Agent ~ 0.923 +0.17 627  035+0.11  65.40 + 1891
wio Literature Agent 0.923 £ 0.11 627 0414006 8300+ 1498  Setting Optim. Val. (x) (%) Exp.Rate Conv. Iter.
. . . GPT-40 [1] 1.086+0.05 73.8 0.45+0.07 85.5+8.6
Table 2 proves the contributions of literature agent qyen s 140} 0.826+£008  56.1  0.33+£0.04 82.0+117
Case Study

* Research objective: Find the structural parameters corresponding to the strongest chirality
(g-factor characteristics) in the nano helix material system.

* Research constraint: Explicitly show the underlying physicochemical principles regarding
the structure and property relationships.

* Literature insights: Quantum-Chemical Study of the Photophysical Behavior of Mesogenic
Europium(lll) Complexes with p-Diketones and Lewis Bases with its summarization
establish that coordination polyhedra govern optical properties in complex materials.

* Hypothesis generation: By optimizing the helix radius to an initial value of 55 (within the
range of 20 to 90), the nano helices material system will exhibit the strongest chirality (g-
factor characteristics), as the helix radius significantly influences the coordination
polyhedra and optical properties, aligning with the physicochemical principles of structure-
property relationships highlighted in the literature.

We summarize the principle in hypothesis generation over iterations:

e [Iter. 1: Helix radius governs coordination geometry and optical anisotropy, critically tuning
chirality in accordance with structure-property principles.

» Iter. 2: Helix radius and the number of turns jointly regulate structural symmetry and ligand
field effects, driving chiral enhancement through coordinated geometry.

e Iter. 3: Interplay among helix radius, pitch, and the number of turns modulates helical
symmetry and nonlinear optical response, enabling peak chiral performance.

* Iter. 4-6: Synergistic tuning of helix radius, pitch, and fiber geometry shapes optical
anisotropy and structural rigidity, reinforcing chiral amplification.

e Iter. 7-8: Coordinated modulation of helix radius, pitch and the number of turns tunes
chirality via structural asymmetry, guided by CD spectra and bio-inspired design.

g-factor evolution over iterations: 0.418 — 0.625 — 0.706 — 0.95 — 0.974.

Impact Statement

To the best of our knowledge, this work represents the first exploration of principle-driven
materials discovery (PMD) using language models. Our PriM framework demonstrates a
significant advancement in automated materials discovery by integrating scientific principles
into exploration process through multi-agent collaboration. By embedding physicochemical
principles into hypothesis generation and experimental validation, PriM not only achieves
superior performance 1n identifying optimal material properties but also maintains
interpretability throughout the discovery process. This approach bridges the gap between black-
box optimization and scientific understanding, paving the way for Al-assisted discovery that
remains grounded in established scientific methodology.

Limitations and Future Work

The reliance on LLM inference introduces potential biases or hallucinated correlations between
structure variables and property values. Though PriM includes verification mechanisms, further
work 1s needed to quantify and mitigate these biases. In addition, we plan to incorporate
advanced reasoning mechanisms that refines hypothesis selection through structured causal
inference, this may potentially improve exploration efficiency and interpretability. We also aim
to extend PriM to more complex scientific systems where mechanistic understanding is limited,
where principle guided exploration could be particularly valuable.
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